CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice |
Yanxing Yang1, Kaiwen Chen1, Zhaofeng Ding1, Adrian D. Hillier2, and Lei Shu1,3,4* |
1State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200438, China 2ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0QX, United Kingdom 3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China 4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
|
|
Cite this article: |
Yanxing Yang, Kaiwen Chen, Zhaofeng Ding et al 2022 Chin. Phys. Lett. 39 107502 |
|
|
Abstract The structure and magnetic properties of rare-earth ions Tm$^{3+}$ Kagomé lattice Tm$_3$Sb$_3$Mg$_2$O$_{14}$ are studied by x-ray diffraction, magnetic susceptibility and muon spin relaxation (μSR) experiments. The existence of a small amount of Tm/Mg site-mixing disorder is revealed. DC magnetic susceptibility measurement shows that Tm$^{3+}$ magnetic moments are antiferromagnetically correlated with a negative Curie–Weiss temperature of $-$26.3 K. Neither long-range magnetic order nor spin-glass transition is observed by DC and AC magnetic susceptibility, and confirmed by μSR experiment down to 0.1 K. However, the emergence of short-range magnetic order is indicated by the zero-field μSR experiments, and the absence of spin dynamics at low temperatures is evidenced by the longitudinal-field μSR technique. Compared with the results of Tm$_3$Sb$_3$Zn$_2$O$_{14}$, another Tm-based Kagomé lattice with much more site-mixing disorder, the gapless spin liquid like behaviors in Tm$_3$Sb$_3$Zn$_2$O$_{14}$ can be induced by disorder effect. Samples with perfect geometrical frustration are in urgent demand to establish whether QSL exists in this kind of materials with rare-earth Kagomé lattice.
|
|
Received: 15 August 2022
Published: 29 September 2022
|
|
PACS: |
75.10.Kt
|
(Quantum spin liquids, valence bond phases and related phenomena)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
76.75.+i
|
(Muon spin rotation and relaxation)
|
|
|
|
|
[1] | Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502 |
[2] | Keimer B and Moore J E 2017 Nat. Phys. 13 1045 |
[3] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 |
[4] | Anderson P W 1987 Science 235 1196 |
[5] | Kitaev A 2006 Ann. Phys. 321 2 |
[6] | Furukawa T, Miyagawa K, Itou T, Ito M, Taniguchi H, Saito M, Sasaki T, and Kanoda K 2015 Phys. Rev. Lett. 115 077001 |
[7] | Savary L and Balents L 2017 Phys. Rev. Lett. 118 087203 |
[8] | Kimchi I, McQueen T M, and Lee P A 2018 Nat. Commun. 9 4367 |
[9] | Ma Z, Wang J, Dong Z Y, Zhang J, Li S, Zheng S H, Yu Y, Wang W, Che L, Ran K, Bao S, Cai Z, Čermák P, Schneidewind A, Yano S, Gardner J S, Lu X, Yu S L, Liu J M, Li J X, and Wen J 2018 Phys. Rev. Lett. 120 087201 |
[10] | Parker E and Balents L 2018 Phys. Rev. B 97 184413 |
[11] | Bramwell S T and Gingras M J P 2001 Science 294 1495 |
[12] | Balents L 2010 Nature 464 199 |
[13] | Broholm C, Cava R J, Kivelson S A, Norman M R, and Senthil T 2020 Science 367 eaay0668 |
[14] | Sachdev S 1992 Phys. Rev. B 45 12377 |
[15] | Mila F 1998 Phys. Rev. Lett. 81 2356 |
[16] | Bert F, Nakamae S, Ladieu F, L'Hôte D, Bonville P, Trombe J C, and Mendels P 2007 Phys. Rev. B 76 132411 |
[17] | Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Nocera D G, and Lee Y S 2007 Phys. Rev. Lett. 98 107204 |
[18] | Imai T, Nytko E A, Shores M P, and Nocera D G 2008 Phys. Rev. Lett. 100 077203 |
[19] | Mendels P, Bert F, de Vries M A, Olariu A, Harrison A, Duc F, Trombe J C, Amato A, and Baines C 2007 Phys. Rev. Lett. 98 077204 |
[20] | Shores M P, Bartlett B M, and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 |
[21] | de Vries M A, Stewart J R, Deen P P, Piatek J O, Rønnow H M, and Harrison A 2009 Phys. Rev. Lett. 103 237201 |
[22] | Sanders M B, Krizan J W, and Cava R J 2016 J. Mater. Chem. C 4 541 |
[23] | Ding Z F, Yang Y X, Zhang J, Tan C, Chen G, and Shu L 2018 Phys. Rev. B 98 174404 |
[24] | Ma Z, Dong Z Y, Wu S, Zhu Y, Bao S, Cai Z, Wang W, Shangguan Y, Wang J, Ran K, Yu D, Deng G, Mole R A, Li H F, Li J X, and Wen J 2020 Phys. Rev. B 102 224415 |
[25] | Toby B H and Von Dreele R B 2013 J. Appl. Crystallogr. 46 544 |
[26] | Toby B H 2001 J. Appl. Crystallogr. 34 210 |
[27] | Hillier A D, Blundell S J, McKenzie I, Umegaki I, Shu L, Wright J A, Prokscha T, Bert F, Shimomura K, Alberto H, and Watanabe I 2022 Nat. Rev. Methods Primers 2 4 |
[28] | Toby B H 2006 Powder Diffr. 21 67 |
[29] | Ashcroft N W and Mermin N D 1976 Solid State Physics (Holt-Saunders) |
[30] | Zhu Z H and Shu L 2020 Prog. Phys. 40 143 |
[31] | de Réotier P D and Yaouanc A 1997 J. Phys.: Condens. Matter 9 9113 |
[32] | Yang Y X, Wang Y, Hillier A D, and Shu L 2022 Phys. Rev. B 105 174418 |
[33] | Dai P L, Zhang G, Xie Y, Duan C, Gao Y, Zhu Z, Feng E, Tao Z, Huang C L, Cao H, Podlesnyak A, Granroth G E, Everett M S, Neuefeind J C, Voneshen D, Wang S, Tan G, Morosan E, Wang X, Lin H Q, Shu L, Chen G, Lu X, and Dai P 2021 Phys. Rev. X 11 021044 |
[34] | Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Huang Y Y, Cheng E J, Yu Y J, Hillier A D, Chen X H, Wu T, Li S Y, and Shu L 2021 arXiv:2112.06523 |
[35] | Knolle J, Moessner R, and Perkins N B 2019 Phys. Rev. Lett. 122 047202 |
[36] | Kao W H, Knolle J, Moessner R, and Perkins N B 2021 Phys. Rev. X 11 011034 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|