Chin. Phys. Lett.  2021, Vol. 38 Issue (9): 094201    DOI: 10.1088/0256-307X/38/9/094201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation
Yuan-Yuan Yan  and Wen-Jun Liu*
State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
Cite this article:   
Yuan-Yuan Yan  and Wen-Jun Liu 2021 Chin. Phys. Lett. 38 094201
Download: PDF(747KB)   PDF(mobile)(852KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The complex cubic-quintic Ginzburg–Landau equation (CQGLE) is a universal model for describing a dissipative system, especially fiber laser. The analytic one-soliton solution of the variable-coefficients CQGLE is calculated by a modified Hirota method. Then, phenomena of soliton pulses splitting and stable bound states of two solitons are investigated. Moreover, rectangular dissipative soliton pulses of the variable-coefficients CQGLE are realized and controlled effectively in the theoretical research for the first time, which breaks through energy limitation of soliton pulses and is expected to provide theoretical basis for preparation of high-energy soliton pulses in fiber lasers.
Received: 03 June 2021      Published: 02 September 2021
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
  42.55.Wd (Fiber lasers)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11875008 and 12075034), and the Beijing University of Posts and Telecommunications Excellent Ph.D. Students Foundation (Grant No. CX2021129).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/9/094201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I9/094201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuan-Yuan Yan  and Wen-Jun Liu
[1] Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 298 81
[2] Kharif C and Pelinovsky E 2003 Eur. J. Mech. B 22 603
[3] Wang C, Law K J H, Kevrekidis P G, and Porter M A 2013 Phys. Rev. A 87 023621
[4] Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N, and Dudley J M 2010 Nat. Phys. 6 790
[5] Wazwaz A M 2017 Math. Methods Appl. Sci. 40 4128
[6] Kamchatnov A M and Korneev S V 2010 Phys. Lett. A 374 4625
[7] Wazwaz A M 2017 Appl. Math. Lett. 70 1
[8] Haus H A and Wong W S 1996 Rev. Mod. Phys. 68 423
[9] Serkin V N, Hasegawa A, and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102
[10] Roy S and Bhadra S 2008 Commun. Nonlinear Sci. Numer. Simul. 13 2157
[11] Chen Z G, Segev M, and Christodoulides D N 2012 Rep. Prog. Phys. 75 086401
[12] Konotop V V, Shchesnovich V S, and Zezyulin D A 2012 Phys. Lett. A 376 2750
[13] Zuo D W and Zhang G F 2019 Appl. Math. Lett. 93 66
[14] Zhang Y S and He J S 2019 Chin. Phys. Lett. 36 030201
[15] Yu F J 2019 Appl. Math. Lett. 92 108
[16] Xie X Y and Meng G Q 2019 Appl. Math. Lett. 92 201
[17] Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501
[18] Lan Z Z 2018 Appl. Math. Lett. 86 243
[19] Li M and Xu T 2015 Phys. Rev. E 91 033202
[20] Lan Z Z 2019 Appl. Math. Lett. 94 126
[21] Xu T, Lan S, Li M, Li L L, and Zhang G W 2019 Physica D 390 47
[22] Chen J, Luan Z, Zhou Q, Alzahrani A K, Biswas A, and Liu W J 2020 Nonlinear Dyn. 100 2817
[23] Deng Q and Yao X 2020 J. Math. Phys. 61 041504
[24]Ping T J and Sheng Z 2005 J. Optoelectron. Laser 16 120
[25] Mollenauer L F and Smith K 1988 Opt. Lett. 13 675
[26] Mollenauer L F and Smith K 1989 Opt. Lett. 14 1284
[27] Bao J D 1992 Chin. Phys. Lett. 9 1
[28] Han Q and Zhang L Y 1998 Chin. Phys. Lett. 15 742
[29] Uzunov I M, Georgiev Z D, and Arabadzhiev T N 2018 Phys. Rev. E 97 052215
[30] Li J F, Jiang Y, Sun W M, Wang F, and Zong H S 2010 Chin. Phys. Lett. 27 087403
[31] Yan Y Y and Liu W J 2019 Appl. Math. Lett. 98 171
[32] Wang L L and Liu W J 2020 Chin. Phys. B 29 070502
[33] Moores J D 1993 Opt. Commun. 96 65
[34] Firth W J and Scroggie A J 1996 Phys. Rev. Lett. 76 1623
[35] Grelu P and Akhmediev N 2004 Opt. Express 12 3184
[36] Gurevich S V, Schelte C, and Javaloyes J 2019 Phys. Rev. A 99 61803
[37] Nozaki K and Bekki N 1984 J. Phys. Soc. Jpn. 53 1581
[38] Kalashnikov V L 2009 Phys. Rev. E 80 46606
[39] Yan Y Y, Liu W J, Zhou Q, and Biswas A 2020 Nonlinear Dyn. 99 1313
[40] N, Maan N, Goyal A, Raju T S, and Kumar C N 2020 Phys. Lett. A 384 126675
[41] Yin X, Chen L, Wang J, Zhang X, and Ma G 2021 Alexandria Eng. J. 60 889
[42] Akhmediev N N, Afanasjev V V, and Soto-Crespo J M 1996 Phys. Rev. E 53 1190
[43] Akhmediev N N, Ankiewicz A, and Soto-Crespo J M 1998 J. Opt. Soc. Am. B 15 515
[44] Wu X, Tang D Y, Zhang H, and Zhao L M 2009 Opt. Express 17 5580
[45] Zheng Z, Ouyang D, and Ren X 2019 Photon. Res. 7 513
[46] Zhang X, Gu C, and Chen G 2012 Opt. Lett. 37 1334
[47] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84
[48] Singh P G, Rajib P, Malomed B A, and Soumendu J 2018 J. Opt. 20 105501
[49] Huang L G, Pang L H, Wong P, Li Y Q, and Bai S Y 2016 Ann. Phys. 528 493
[50] Zakeri G A and Yomba E 2013 J. Phys. Soc. Jpn. 82 084002
Viewed
Full text


Abstract