NUCLEAR PHYSICS |
|
|
|
|
Development of a Spin-Exchange Optical Pumping-Based Polarized $^{3}$He System at the China Spallation Neutron Source (CSNS) |
Chuyi Huang1,2†, Junpei Zhang1,2†, Fan Ye1,2, Zecong Qin1,2, Syed Mohd Amir1,2, Zachary Norris Buck1,2, Ahmed Salman1,2, Wolfgang Kreuzpaintner1,2, Xin Qi1,2, Tianhao Wang1,2*, and Xin Tong1,2* |
1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China 2Spallation Neutron Source Science Center, Dongguan 523803, China
|
|
Cite this article: |
Chuyi Huang, Junpei Zhang, Fan Ye et al 2021 Chin. Phys. Lett. 38 092801 |
|
|
Abstract Polarized $^{3}$He neutron spin filters (NSFs) can be used as a vital tool for neutron polarization production and analysis. The China Spallation Neutron Source (CSNS), as one of the major neutron facilities in China, has committed resources to the development of a polarized $^3$He NSF program to support its growing polarized neutron research. A spin-exchange optical pumping (SEOP)-based polarized $^{3}$He system and other necessary hardware for NSF transport has been recently developed. The performance of the system is benchmarked using an in-house developed cell named “Trident”. Neutron beam measurements yield a $^{3}$He polarization of 77% with over 200 h of on-beam relaxation time. Combining this newly developed SEOP system with the recently reported cell fabrication station, CSNS is now capable of the fully self-sustained production of $^{3}$He NSFs that shall support its future neutron polarization research.
|
|
Received: 07 June 2021
Published: 02 September 2021
|
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2020YFA0406000), the National Natural Science Foundation of China (Grant No. 11875265), the Scientific Instrument Developing Project of the Chinese Academy of Sciences [Grant No. 284(2018)], Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019B1515120079) and Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents (Grant No. 20191122). |
|
|
[1] | Wollan E O, Davidson W L, and Shull C G 1949 Phys. Rev. 75 1348 |
[2] | Shull C G, Strauser W A, and Wollan E O 1951 Phys. Rev. 83 333 |
[3] | Yarnell J L, Warren J L, Wenzel R G, and Koenig S H 1964 IBM J. Res. Dev. 8 234 |
[4] | Hearmon A J, Fabrizi F, Chapon L C, Johnson R D, Prabhakaran D, Streltsov S V, Brown P J, and Radaelli P G 2012 Phys. Rev. Lett. 108 237201 |
[5] | Cook J C, Richter D, Scharpf O, Benham M J, Ross D K, Hempelmann R, Anderson I S, and Sinha S K 1990 J. Phys.: Condens. Matter 2 79 |
[6] | Treimer W 2014 J. Magn. Magn. Mater. 350 188 |
[7] | Wang T, Jiang C Y, Bilheux H Z, Dhiman I, Bilheux J C, Crow L, McDonald L, Robertson L, Kardjilov N, Pynn R, and Tong X 2019 Rev. Sci. Instrum. 90 033705 |
[8] | Coulter K P, Chupp T E, McDonald A B, Bowman C D, Bowman J D, Szymanski J J, Yuan V, Cates G D, Benton D R, and Earle E D 1990 Nucl. Instrum. Methods Phys. Res. Sect. A 288 463 |
[9] | Tong X, Jiang C Y, Lauter V, Ambaye H, Brown D, Crow L, Gentile T R, Goyette R, Lee W T, Parizzi A, and Robertson J L 2012 Rev. Sci. Instrum. 83 075101 |
[10] | Freund A, Pynn R, Stirling W G, and Zeyen C M E 1983 Physica B+C 120 86 |
[11] | Mezei F 1976 Commun. Phys. (London) 1 81 |
[12] | Chen W C, Gentile T R, Fu C B, Watson S, Jones G L, McIver J W, and Rich D R 2011 J. Phys.: Conf. Ser. 294 012003 |
[13] | Boag S, Babcock E, Andersen K H, Becker M, Charlton T R, Chen W C, Dalgliesh R M, Elmore S D, Frost C D, Gentile T R, Lopez A R, Parnell S R, Petoukhov A K, Skoda M W A, and Soldner T 2009 Physica B 404 2659 |
[14] | Gentile T R, Chen W C, Jones G L, Babcock E, and Walker T G 2005 J. Res. Natl. Inst. Stand. Technol. 110 299 |
[15] | Jiang C Y, Tong X, Brown D R, Glavic A, Ambaye H, Goyette R, Hoffmann M, Parizzi A A, Robertson L, and Lauter V 2017 Rev. Sci. Instrum. 88 025111 |
[16] | Okudaira T, Oku T, Ino T, Hayashida H, Kira H, Sakai K, Hiroi K, Takahashi S, Aizawa K, Endo H, Endo S, Hino M, Hirota K, Honda T, Ikeda K, Kakurai K, Kambara W, Kitaguchi M, Oda T, Ohshita H, Otomo T, Shimizu H M, Shinohara T, Suzuki J, and Yamamoto T 2020 Nucl. Instrum. Methods Phys. Res. Sect. A 977 164301 |
[17] | Salhi Z, Babcock E, Bingöl K, Bussmann K, Kammerling H, Ossovyi V, Heynen A, Deng H, Hutanu V, Masalovich S, Voigt J, and Ioffe A 2019 J. Phys.: Conf. Ser. 1316 012009 |
[18] | Yan S, Zhang M F, Guo W C, Wang W Z, Gong J, Liang T J, Liu B Q, Peng M, Peng S M, Sun G, Tu X Q, Yan H Y, Zhang J H, and Zheng H 2019 Sci. Chin. Phys. Mech. & Astron. 62 102021 |
[19] | Chen H and Wang X L 2016 Nat. Mater. 15 689 |
[20] | Babcock E, Nelson I, Kadlecek S, Driehuys B, Anderson L W, Hersman F W, and Walker T G 2003 Phys. Rev. Lett. 91 123003 |
[21] | https://www.qpclasers.com/ |
[22] | McIver J W, Erwin R, Chen W C, and Gentile T R 2009 Rev. Sci. Instrum. 80 063905 |
[23] | Cates G D, Schaefer S R, and Happer W 1988 Phys. Rev. A 37 2877 |
[24] | Jiang C Y, Tong X, Brown D R, Culbertson H, Graves-Brook M K, Hagen M E, Kadron B, Lee W T, Robertson J L, and Winn B 2013 Rev. Sci. Instrum. 84 065108 |
[25] | Parnell S R, Woolley E B, Boag S, and Frost C D 2008 Meas. Sci. Technol. 19 045601 |
[26] | Babcock E, Petoukhov A, Chastagnier J, Jullien D, Lelièvre-Berna E, Andersen K H, Georgii R, Masalovich S, Boag S, Frost C D, and Parnell S R 2007 Physica B 397 172 |
[27] | McKetterick T J, Boag S, Stewart J R, Frost C D, Skoda M W A, Parnell S R, and Babcock E 2011 Physica B 406 2436 |
[28] | Romalis M V and Cates G D 1998 Phys. Rev. A 58 3004 |
[29] | Qin Z C, Huang C Y, Buck Z N, Kreuzpaintner W, Amir S M, Salman A, Ye F, Zhang J P, Jiang C Y, Wang T, and Tong X 2021 Chin. Phys. Lett. 38 052801 |
[30] | Batz M, Baeßler S, Heil W, Otten E W, Rudersdorf D, Schmiedeskamp J, Sobolev Y, and Wolf M 2005 J. Res. Natl. Inst. Stand. Technol. 110 293 |
[31] | Babcock E, Nelson I A, Kadlecek S, and Walker T G 2005 Phys. Rev. A 71 013414 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|