Chin. Phys. Lett.  2021, Vol. 38 Issue (9): 090501    DOI: 10.1088/0256-307X/38/9/090501
GENERAL |
Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation
Qi-Hao Cao  and Chao-Qing Dai*
College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China
Cite this article:   
Qi-Hao Cao  and Chao-Qing Dai 2021 Chin. Phys. Lett. 38 090501
Download: PDF(1992KB)   PDF(mobile)(2091KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The fractional second- and third-order nonlinear Schrödinger equation is studied, symmetric and antisymmetric soliton solutions are derived, and the influence of the Lévy index on different solitons is analyzed. The stability and stability interval of solitons are discussed. The anti-interference ability of stable solitons to the small disturbance shows a good robustness.
Received: 14 July 2021      Published: 02 September 2021
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR20A050001), the National Natural Science Foundation of China (Grant No. 12075210), and the Scientific Research and Developed Fund of Zhejiang A&F University (Grant No. 2021FR0009).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/9/090501       OR      https://cpl.iphy.ac.cn/Y2021/V38/I9/090501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi-Hao Cao  and Chao-Qing Dai
[1] Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 298 81
[2] Yu W T, Zhou Q, Mirzazadeh M, Liu W J, and Biswas A 2019 J. Adv. Res. 15 69
[3] Wen L, Guo H, Wang Y J, Hu A Y, Saito H, Dai C Q, and Zhang X F 2020 Phys. Rev. A 101 33610
[4] Li H, Liu C, Yang Z Y, and Yang W L 2020 Chin. Phys. Lett. 37 030302
[5] Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501
[6] Wang W, Yao R X, and Lou S Y 2020 Chin. Phys. Lett. 37 100501
[7] Fang Y, Wu G Z, Wang Y Y, and Dai C Q 2021 Nonlinear Dyn. 105 603
[8] Wang D S, Guo B, and Wang X L 2019 J. Differ. Eq. 266 5209
[9] Dai C Q and Wang Y Y 2020 Nonlinear Dyn. 102 1733
[10] Liu X Y, Zhou Q, Biswas A, Alzahrani A K, and Liu W J 2020 J. Adv. Res. 24 167
[11] Dong L, Qi W, Peng P, Wang L, and Huang C 2020 Nonlinear Dyn. 102 303
[12] Zhao L C, Qin Y H, Wang W L, and Yang Z Y 2020 Chin. Phys. Lett. 37 050502
[13] Wang B H, Wang Y Y, Dai C Q, and Chen Y X 2020 Alexandria Eng. J. 59 4699
[14] Longhi S 2015 Opt. Lett. 40 1117
[15] Li P F, Li R J, and Dai C Q 2021 Opt. Express 29 3193
[16] Li P F, Malomed B A, and Mihalache D 2020 Chaos Solitons & Fractals 132 109602
[17] Griesmaier A, Stuhler J, Koch T, Fattori M, Pfau T, Giovanazzi S 2006 Phys. Rev. Lett. 97 250402
[18] Marco P, Claudio C, Gaetano A, Antonio D L, and Cesare U 2004 Nature 432 733
[19] Mihalache D, Mazilu D, Lederer F, Crasovan L C, Kartashov Y V, Torner L, and Malomed B A 2006 Phys. Rev. E 74 066614
[20] Esbensen B K, Wlotzka A, Bache M, Bang O, and Krolikowski W 2011 Phys. Rev. A 84 053854
Viewed
Full text


Abstract