Chin. Phys. Lett.  2021, Vol. 38 Issue (9): 090302    DOI: 10.1088/0256-307X/38/9/090302
GENERAL |
Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates
Peng Gao1,2, Zeyu Wu3, Zhan-Ying Yang1,2,4*, and Wen-Li Yang1,2,4,5
1School of Physics, Northwest University, Xi'an 710127, China
2Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
3Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
4Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
5Institute of modern Physics, Northwest University, Xi'an 710127, China
Cite this article:   
Peng Gao, Zeyu Wu, Zhan-Ying Yang et al  2021 Chin. Phys. Lett. 38 090302
Download: PDF(733KB)   PDF(mobile)(844KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically study the dynamics of rotating ring-shaped perturbation on two-dimensional homogeneous Bose–Einstein condensates, where a new ring-shaped structure with reverse rotation appears. The reversely rotating mode is directly caused by the existence of the plane wave (namely the homogeneous background). By the modified linear stability analysis method, we quantitatively predict the influence of the background's density on perturbation dynamics, including the velocity, amplitude, and frequency of the two rings. We construct an approximative solution to describe the short-lived dynamics of initial perturbation, which agrees well with our numerical results. Also, after the two rings separate, the transfer of atom number between them becomes linear, and the rate of transfer is impacted by the radial momentum of initial perturbation.
Received: 27 June 2021      Published: 02 September 2021
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11875220 and 12047502).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/9/090302       OR      https://cpl.iphy.ac.cn/Y2021/V38/I9/090302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Peng Gao
Zeyu Wu
Zhan-Ying Yang
and Wen-Li Yang
[1] Bradley C C, Sackett C A, Tollet J J, and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[2] Bradley C C, Sackett C A, and Hulet R G 1997 Phys. Rev. Lett. 78 985
[3] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y, and Salomon C 2002 Science 296 1290
[4] Strecker K E, Partridge G B, Truscott A G, and Hulet R G 2002 Nature 417 150
[5] Cornish S L, Thompson S T, and Wieman C E 2006 Phys. Rev. Lett. 96 170401
[6]Kevrekidis P G, Frantzeskakis D J, and Carretero-González R 2007 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (Berlin: Springer) chap 1 p 4
[7]Zakharov V E and Shabat A B 1972 Sov. Phys.-JETP 34 62
[8] Song W W, Li Q Y, Li Z D, and Fu G S 2010 Chin. Phys. B 19 070503
[9] Liu X S, Ren Y, Yang Z Y, Liu C, and Yang W L 2018 Chin. Phys. Lett. 35 070501
[10] Zhao L C, Yang Z Y, and Yang W L 2019 Chin. Phys. B 28 010501
[11] Peregrine D H 1983 J. Aust. Math. Soc. Ser. B 25 16
[12] Bludov Y V, Konotop V V, and Akhmediev N 2009 Phys. Rev. A 80 033610
[13] Akhmediev N, Ankiewicz A, and Taki M 2009 Phys. Lett. A 373 675
[14] Akhmediev N, Ankiewicz A, and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[15] Ankiewicz A, Kedziora D J, and Akhmediev N 2011 Phys. Lett. A 375 2782
[16] Guo B L, Ling L M, and Liu Q P 2012 Phys. Rev. E 85 026607
[17] He J S, Zhang H R, Wang L H, Porsezian K, and Fokas A S 2013 Phys. Rev. E 87 052914
[18]Kuznetsov E A 1977 Sov. Phys. Dokl. 22 507
Ma Y C 1979 Stud. Appl. Math. 60 43
[19] Akhmediev N and Korneev V I 1986 Theor. Math. Phys. 69 1089
[20] Tajiri M and Watanabe Y 1998 Phys. Rev. E 57 3510
[21] Zakharov V E and Gelash A A 2013 Phys. Rev. Lett. 111 054101
[22] Ren Y, Yang Z Y, Liu C, and Yang W L 2018 Chin. Phys. B 27 010504
[23] Liu X S, Zhao L C, Duan L, Gao P, Yang Z Y, and Yang W L 2018 Chin. Phys. Lett. 35 020501
[24]Akhmediev N, Eleonskii V M, and Kulagin N 1985 J. Exp. Theor. Phys. 61 894
[25] Wu B, Liu J, Niu Q 2002 Phys. Rev. Lett. 88 034101
[26] Dudley J M, Genty G, Dias F, Kibler B, and Akhmediev N 2009 Opt. Express 17 21497
[27] Zhao L C and Ling L 2016 J. Opt. Soc. Am. B 33 850
[28] Trillo S and Wabnitz S 1991 Opt. Lett. 16 986
[29] El G, Gurevich A, Khodorovskii V, and Krylov A 1993 Phys. Lett. A 177 357
[30] Biondini G and Mantzavinos D 2016 Phys. Rev. Lett. 116 043902
[31] Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P, and Trillo S 2018 Nat. Photon. 12 303
[32] Conforti M, Li S, Biondini G, and Trillo S 2018 Opt. Lett. 43 5291
[33] Gerton J M, Strekalov D, Prodan I, and Hulet R G 2000 Nature 408 692
[34] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A, Wieman C E 2001 Nature 412 295
[35] Akhmediev N N, Heatley D R, Stegeman G I, and Wright E M 1990 Phys. Rev. Lett. 65 1423
[36] Chen S, Baronio F, Soto-Crespo J M, Grelu P, and Mihalache D 2017 J. Phys. A 50 463001
[37] Guo L, He J, Wang L, Cheng Y, Frantzeskakis D J, van den Bremer T S, and Kevrekidis P G 2020 Phys. Rev. Res. 2 033376
[38] He J, Song Y, Tiofack C G L, and Taki M 2021 Photon. Res. 9 643
[39] Caplan R M, Hoq Q E, Carretero-González R, and Kevrekidis P G 2009 Opt. Commun. 282 1399
[40] Afanasjev V V 1995 Phys. Rev. E 52 3153
[41]Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: Siam) chap 7 p 332
[42] Gao P, Liu C, Zhao L C, Yang Z Y, and Yang W L 2020 Phys. Rev. E 102 022207
[43] Gao P, Duan L, Yao X, Yang Z Y, and Yang W L 2021 Phys. Rev. A 103 023519
Viewed
Full text


Abstract