Chin. Phys. Lett.  2021, Vol. 38 Issue (9): 090301    DOI: 10.1088/0256-307X/38/9/090301
GENERAL |
Low-Noise Intensity Amplification of a Bright Entangled Beam
Yanbo Lou1, Xiaoyin Xu1, Shengshuai Liu1*, and Jietai Jing1,2,3,4*
1State Key Laboratory of Precision Spectroscopy, Joint Institute of Advanced Science and Technology, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
2CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
3Department of Physics, Zhejiang University, Hangzhou 310027, China
4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Cite this article:   
Yanbo Lou, Xiaoyin Xu, Shengshuai Liu et al  2021 Chin. Phys. Lett. 38 090301
Download: PDF(792KB)   PDF(mobile)(889KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We experimentally demonstrate a low-noise phase-sensitive amplifier (PSA) scheme that is able to amplify bright entangled beams at a high level intensity gain of up to 4.4. Moreover, we demonstrate that the PSA scheme introduces much less uncorrelated extra noise to the entangled state than the phase-insensitive amplifier scheme with the same intensity gain. This PSA scheme has potential applications for quantum communication in continuous variable regimes.
Received: 13 June 2021      Editors' Suggestion Published: 02 September 2021
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Hk (Quantum communication)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Fund: Supported by the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2021-01-07-00-08-E00100), the National Natural Science Foundation of China (Grant Nos. 11874155, 91436211, and 11374104), the Basic Research Project of Shanghai Science and Technology Commission (20JC1416100), the Natural Science Foundation of Shanghai (Grant No. 17ZR1442900); Minhang Leading Talents (Grant No. 201971), the Program of Scientific and Technological Innovation of Shanghai (Grant No. 17JC1400401), the Shanghai Sailing Program (Grant No. 21YF1410800), the National Basic Research Program of China (Grant No. 2016YFA0302103), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the 111 Project (Grant No. B12024).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/9/090301       OR      https://cpl.iphy.ac.cn/Y2021/V38/I9/090301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanbo Lou
Xiaoyin Xu
Shengshuai Liu
and Jietai Jing
[1] Horodecki R, Horodecki P, Horodecki M, and Horodecki K 2009 Rev. Mod. Phys. 81 865
[2] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[3] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, and Lloyd S 2012 Rev. Mod. Phys. 84 621
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Ralph T C 1999 Phys. Rev. A 61 010303(R)
[6] Naik D S, Peterson C G, White A G, Berglund A J, and Kwiat P G 2000 Phys. Rev. Lett. 84 4733
[7] Tittel W, Brendel J, Zbinden H, and Gisin N 2000 Phys. Rev. Lett. 84 4737
[8] Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf N J, and Grangier P 2003 Nature 421 238
[9] Gisin N, Pironio S, and Sangouard N 2010 Phys. Rev. Lett. 105 070501
[10] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[11] Zhang J and Peng K 2000 Phys. Rev. A 62 064302
[12] Li X, Pan Q, Jing J, Zhang J, Xie C, and Peng K 2002 Phys. Rev. Lett. 88 047904
[13] Heaney L and Vedral V 2009 Phys. Rev. Lett. 103 200502
[14] McCormick C F, Boyer V, Arimonda E, and Lett P D 2007 Opt. Lett. 32 178
[15] Boyer V, Marino A M, Pooser R C, Lett P D 2008 Science 321 544
[16] Marino A M, Pooser R C, Boyer V, and Lett P D 2009 Nature 457 859
[17] Pooser R C, Marino A M, Boyer V, Jones K M, and Lett P D 2009 Phys. Rev. Lett. 103 010501
[18] Corzo N V, Marino A M, Jones K M, and Lett P D 2012 Phys. Rev. Lett. 109 043602
[19] Liu S, Lou Y, and Jing J 2019 Phys. Rev. Lett. 123 113602
[20] Tong Z, Lundström C, Andrekson P A, Mckinstrie C J, Karlsson M, Blessing D J, Tipsuwannakul E, Puttnam B J, Toda H, and Grüner-Nielsen L 2011 Nat. Photon. 5 430
[21] Kakande J, Lundström C, Andrekson P A, Tong Z, Karlsson M, Petropoulos P, Parmigiani F, and Richardson D J 2010 Opt. Express 18 4130
[22] Tong Z, McKinstrie C J, Lundström C, Karlsson M, and Andrekson P A 2010 Opt. Express 18 15426
[23] Tong Z, Bogris A, Lundström C, McKinstrie C J, Vasilyev M, Karlsson M, and Andrekson P A 2010 Opt. Express 18 14820
[24] Tong Z, Bogris A, Karlsson M, and Andrekson P A 2010 Opt. Express 18 2884
[25] Fang Y and Jing J 2015 New J. Phys. 17 023027
[26] Duan L M, Giedke G, Cirac J I, and Zoller P 2000 Phys. Rev. Lett. 84 2722
[27] Simon R 2000 Phys. Rev. Lett. 84 2726
[28] Clark J B, Glasser R T, Glorieux Q, and Lett P D 2014 Nat. Photon. 8 515
[29] Xin J, Lu X M, Wang H, and Jing J 2019 Phys. Rev. A 99 013813
[30] Huang K, Jeannic H L, Ruaudel J, Morin O, and Laurat J 2014 Rev. Sci. Instrum. 85 123112
Viewed
Full text


Abstract