GENERAL |
|
|
|
|
Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation |
Xiao-Man Zhang1, Yan-Hong Qin1, Li-Ming Ling1*, and Li-Chen Zhao2,3,4* |
1School of Mathematics, South China University of Technology, Guangzhou 510640, China 2School of Physics, Northwest University, Xi'an 710127, China 3Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China 4Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
|
|
Cite this article: |
Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling et al 2021 Chin. Phys. Lett. 38 090201 |
|
|
Abstract For a scalar integrable model, it is generally believed that the solitons interact with each other elastically, for instance, multi-bright solitons from the nonlinear Schrödinger equation and the Korteweg-de Vries equation, etc. We obtain double-valley dark solitons from the defocusing Hirota equation by the Darboux transformation. Particularly, we report a remarkable phenomenon for the inelastic interaction of the double-valley dark solitons, in contrast to the solitons interacting with each other elastically for a scalar integrable model in previous works. Furthermore, we give the explicit conditions for the elastic collision based on the asymptotic analysis results. It is shown that the double-valley dark solitons could also admit elastic interaction under the special parameters settings.
|
|
Received: 08 July 2021
Editors' Suggestion
Published: 02 September 2021
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11771151, 12022513, and 11775176), the Guangzhou Science and Technology Program (Grant No. 201904010362), the Fundamental Research Funds for Central Universities (Grant No. 2019MS110), and the Major Basic Research Program of Natural Science of Shaanxi Province (Grant No. 2018KJXX-094). |
|
|
[1] | Benney D J and Newell A C 1967 J. Math. Phys. 46 133 |
[2] | Shukla P K and Eliasson B 2010 Phys. -Usp. 53 51 |
[3] | Dalfovo F, Giorgini S, Pitaevskii L P, and Stringari S 1999 Rev. Mod. Phys. 71 463 |
[4] | Agrawal G P 2001 Nonlinear Fiber Optics 3rd edn (San Diego: Academic Press) |
[5] | Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford: Clarendon Press) |
[6] | Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press) |
[7] | Hirota R 1973 J. Math. Phys. 14 805 |
[8] | Tasgal R S and Potasek M J 1992 J. Math. Phys. 33 1208 |
[9] | Kodama Y and Hasegawa A 1987 IEEE J. Quantum Electron. 23 510 |
[10] | Sirota E B 2001 Phys. Rev. E 64 050701 |
[11] | Kang Z Z and Xia T C 2019 Chin. Phys. Lett. 36 110201 |
[12] | Ankiewicz A, Soto-Crespo J M, and Akhmediev N 2010 Phys. Rev. E 81 046602 |
[13] | Tao Y S and He J S 2012 Phys. Rev. E 85 026601 |
[14] | Wang D S, Chen F, and Wen X Y 2016 Adv. Differ. Eq. 2016 67 |
[15] | Chen S Y and Yan Z Y 2019 Appl. Math. Lett. 95 65 |
[16] | Chowdury A, Ankiewicz A, and Akhmediev N 2015 Proc. R. Soc. A 471 20150130 |
[17] | Zhang H Q and Yuan S S 2017 Nonlinear Dyn. 89 531 |
[18] | Zhang X E and Ling L M 2021 Physica D 426 132982 |
[19] | Bindu S G, Mahalingam A, and Porsezian K 2001 Phys. Lett. A 286 321 |
[20] | Mahalingam A and Porsezian K 2001 Phys. Rev. E 64 046608 |
[21] | Zhao L C, Qin Y H, Wang W L, Yang Z Y 2020 Chin. Phys. Lett. 37 050502 |
[22] | Qin Y H, Zhao L C, Yang Z Q, and Ling L M 2021 Phys. Rev. E 104 014201 |
[23] | Sheppard A P and Kivshar Y S 1997 Phys. Rev. E 55 4773 |
[24] | Lakomy K, Nath R, and Santos L 2012 Phys. Rev. A 86 013610 |
[25] | Lou S Y 2019 arXiv:1909.03399v1 [nlin.SI] |
[26] | Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese) |
[27] | Feng B F 2014 J. Phys. A 47 355203 |
[28] | Xie X Y and Liu X B 2020 Appl. Math. Lett. 105 106291 |
[29] | Stalin S, Ramakrishnan R, Senthilvelan M, and Lakshmanan M 2019 Phys. Rev. Lett. 122 043901 |
[30] | Ramakrishnan R, Stalin S, and Lakshmanan M 2020 Phys. Rev. E 102 042212 |
[31] | Stalin S, Ramakrishnan R, and Lakshmanan M 2020 Phys. Lett. A 384 126201 |
[32] | Liu L, Tian B, Chai H P, and Yuan Y Q 2017 Phys. Rev. E 95 032202 |
[33] | Xu T, Wang D, Li M, and Liang H 2014 Phys. Scr. 89 075207 |
[34] | Zhang Y S and He J S 2019 Chin. Phys. Lett. 36 030201 |
[35] | Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501 |
[36] | Rogers C and Schief W K 2002 Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory (Cambridge: Cambridge University Press) |
[37] | Matveev V and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer) |
[38] | Gu C H, Hu H S, and Zhou Z X 2005 Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry (Dordrecht: Springer) |
[39] | Wu Y H, Liu C, Yang Z Y, and Yang W L 2020 Chin. Phys. Lett. 37 040501 |
[40] | Wang X and Wang L 2018 Chin. Phys. Lett. 35 030201 |
[41] | Ling L M, Zhao L C, and Guo B L 2015 Nonlinearity 28 3243 |
[42] | Krökel D, Halas N, Giuliani G, and Grischkowsky D 1988 Phys. Rev. Lett. 60 29 |
[43] | Liu W J et al. 2015 Opt. Express 23 26023 |
[44] | Stratmann M, Pagel T, and Mitschke F 2005 Phys. Rev. Lett. 95 143902 |
[45] | Gouveia-Neto A S, Gomes A S L, and Taylor J R 1987 Opt. Lett. 12 395 |
[46] | Weiner A M et al. 1988 Phys. Rev. Lett. 61 2445 |
[47] | Meshulach D and Silberberg Y 1998 Nature 396 239 |
[48] | Liu W J et al. 2020 Commun. Phys. 3 15 |
[49] | Liu W J et al. 2017 Opt. Express 25 2950 |
[50] | Herink G et al. 2017 Science 356 50 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|