CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Narrow Waveguide Based on Ferroelectric Domain Wall |
Gongzheng Chen1,2, Jin Lan1,3*, Tai Min4, and Jiang Xiao1,2,5* |
1Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China 2Institute for Nanoelectronics Devices and Quantum Computing, Fudan University, Shanghai 200433, China 3Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin University, Tianjin 300072, China 4Center for Spintronics and Quantum System, State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China 5Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
|
|
Cite this article: |
Gongzheng Chen, Jin Lan, Tai Min et al 2021 Chin. Phys. Lett. 38 087701 |
|
|
Abstract Ferroelectric materials are spontaneous symmetry breaking systems that are characterized by ordered electric polarizations. Similar to its ferromagnetic counterpart, a ferroelectric domain wall can be regarded as a soft interface separating two different ferroelectric domains. Here we show that two bound state excitations of electric polarization (polar wave), or the vibration and breathing modes, can be hosted and propagate within the ferroelectric domain wall. In particular, the vibration polar wave has zero frequency gap, thus is constricted deeply inside ferroelectric domain wall, and can even propagate in the presence of local pinnings. The ferroelectric domain wall waveguide as demonstrated here offers a new paradigm in developing ferroelectric information processing units.
|
|
Received: 19 April 2021
Published: 02 August 2021
|
|
PACS: |
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
77.80.Dj
|
(Domain structure; hysteresis)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11904260), the Natural Science Foundation of Tianjin (Grant No. 20JCQNJC02020), the Science and Technology Commission of Shanghai Municipality (Grant No. 20JC1415900), and Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01). |
|
|
[1] | Arnaud J 1980 Opt. Quantum Electron. 12 187 |
[2] | Refi J J 2002 Bell Labs Tech. J. 4 246 |
[3] | Voiculescu I and Nordin A N 2012 Biosens. Bioelectron. 33 1 |
[4] | Khitun A, Bao M, and Wang K L 2010 J. Phys. D 43 264005 |
[5] | Wagner K, Kákay A, Schultheiss K, Henschke A, Sebastian T, and Schultheiss H 2016 Nat. Nanotechnol. 11 432 |
[6] | Catalan G, Seidel J, Ramesh R, and Scott J F 2012 Rev. Mod. Phys. 84 119 |
[7] | Krawczyk M and Puszkarski H 2006 Cryst. Res. Technol. 41 547 |
[8] | Marrows C 2005 Adv. Phys. 54 585 |
[9] | Garcia-Sanchez F, Borys P, Soucaille R, Adam J P, Stamps R L, and Kim J V 2015 Phys. Rev. Lett. 114 247206 |
[10] | Lan J, Yu W, Wu R, and Xiao J 2015 Phys. Rev. X 5 041049 |
[11] | Beach G S, Nistor C, Knutson C, Tsoi M, and Erskine J L 2005 Nat. Mater. 4 741 |
[12] | Boulle O, Malinowski G, and Kläui M 2011 Mater. Sci. Eng. R 72 159 |
[13] | Kläui M, Vaz C, Bland J, Wernsdorfer W, Faini G, Cambril E, and Heyderman L 2003 Appl. Phys. Lett. 83 105 |
[14] | Parkin S S, Hayashi M, and Thomas L 2008 Science 320 190 |
[15] | Meyer B and Vanderbilt D 2002 Phys. Rev. B 65 104111 |
[16] | Seidel J 2012 J. Phys. Chem. Lett. 3 2905 |
[17] | Chotorlishvili L, Khomeriki R, Sukhov A, Ruffo S, and Berakdar J 2013 Phys. Rev. Lett. 111 117202 |
[18] | Wu X, Petralanda U, Zheng L, Ren Y, Hu R, Cheong S W, Artyukhin S, and Lai K 2017 Sci. Adv. 3 e1602371 |
[19] | Yang T, Wang B, Hu J M, and Chen L Q 2020 Phys. Rev. Lett. 124 107601 |
[20] | Li Q, Stoica V A, Paściak M, Zhu Y, Yuan Y, Yang T, McCarter M R, Das S, Yadav A K, Park S, Dai C, Lee H J, Ahn Y, Marks S D, Yu S, Kadlec C, Sato T, Hoffmann M C, Chollet M, Kozina M E, Nelson S, Zhu D, Walko D A, Lindenberg A M, Evans P G, Chen L Q, Ramesh R, Martin L W, Gopalan V, Freeland J W, Hlinka J, and Wen H 2021 Nature 592 376 |
[21] | Tani K 1969 J. Phys. Soc. Jpn. 26 93 |
[22] | Ishibashi Y 1989 Ferroelectrics 98 193 |
[23] | Ishibashi Y 1990 Ferroelectrics 104 299 |
[24] | Sivasubramanian S, Widom A, and Srivastava Y 2004 Ferroelectrics 300 43 |
[25] | Widom A, Sivasubramanian S, Vittoria C, Yoon S, and Srivastava Y N 2010 Phys. Rev. B 81 212402 |
[26] | Giri P, Choudhary K, Gupta A S, Bandyopadhyay A, and McGurn A R 2011 Phys. Rev. B 84 155429 |
[27] | Khomeriki R, Chotorlishvili L, Malomed B, and Berakdar J 2015 Phys. Rev. B 91 041408 |
[28] | Cao W and Cross L E 1991 Phys. Rev. B 44 5 |
[29] | Bandyopadhyay A, Ray P, and Gopalan V 2006 J. Phys.: Condens. Matter 18 4093 |
[30] | Hlinka J and Márton P 2006 Phys. Rev. B 74 104104 |
[31] | Merz W J 1954 Phys. Rev. 95 690 |
[32] | Lee D, Behera R K, Wu P et al. 2009 Phys. Rev. B 80 060102 |
[33] | Pöschl G and Teller E 1933 Z. Phys. 83 143 |
[34] | Rodriguez B J, Chu Y, Ramesh R, and Kalinin S V 2008 Appl. Phys. Lett. 93 142901 |
[35] | Yang T, Gopalan V, Swart P, and Mohideen U 1999 Phys. Rev. Lett. 82 4106 |
[36] | Rojac T, Kosec M, Budic B, Setter N, and Damjanovic D 2010 J. Appl. Phys. 108 074107 |
[37] | Ishibashi Y and Salje E 2002 J. Phys. Soc. Jpn. 71 2800 |
[38] | Rao W F and Wang Y U 2007 Appl. Phys. Lett. 90 041915 |
[39] | Lubk A, Gemming S, and Spaldin N 2009 Phys. Rev. B 80 104110 |
[40] | Schilling A, Byrne D, Catalan G, Webber K, Genenko Y, Wu G, Scott J, and Gregg J 2009 Nano Lett. 9 3359 |
[41] | Seidel J, Martin L W, He Q et al. 2009 Nat. Mater. 8 229 |
[42] | Eliseev E A, Morozovska A N, Svechnikov G S, Gopalan V, and Shur V Y 2011 Phys. Rev. B 83 235313 |
[43] | Farokhipoor S and Noheda B 2011 Phys. Rev. Lett. 107 127601 |
[44] | Maksymovych P, Seidel J, Chu Y H, Wu P, Baddorf A P, Chen L Q, Kalinin S V, and Ramesh R 2011 Nano Lett. 11 1906 |
[45] | Schröder M, Haußmann A, Thiessen A, Soergel E, Woike T, and Eng L M 2012 Adv. Funct. Mater. 22 3936 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|