Chin. Phys. Lett.  2021, Vol. 38 Issue (7): 077401    DOI: 10.1088/0256-307X/38/7/077401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$
Qiang Gao1, Yuchen Zhao1,2, Xing-Jiang Zhou1,2,3,4*, and Zhihai Zhu1,2*
1National Lab for Superconductivity, Beijing National laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou et al  2021 Chin. Phys. Lett. 38 077401
Download: PDF(1364KB)   PDF(mobile)(1464KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The recent observation of superconductivity in thin films of infinite-layer nickelate Nd$ _{0.8}$Sr$ _{0.2}$NiO$ _{2}$ has received considerable attention. Despite the many efforts to understand the superconductivity in infinite-layer nickelates, a consensus on the underlying mechanism for the superconductivity has yet to be reached, partly owing to the challenges with the material synthesis. Here, we report the successful growth of superconducting infinite-layer Nd$ _{0.8}$Sr$ _{0.2}$NiO$ _{2}$ films by pulsed laser deposition and soft chemical reduction. The details on the growth process are discussed.
Received: 02 March 2021      Published: 21 June 2021
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.25.-q (Properties of superconductors)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.20.-z (Theories and models of superconducting state)  
Fund: Supported in part by the National Natural Science Foundation of China (Grant Nos. 12074411 and 11888101), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300300 and 2017YFA0302900), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G06).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/7/077401       OR      https://cpl.iphy.ac.cn/Y2021/V38/I7/077401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiang Gao
Yuchen Zhao
Xing-Jiang Zhou
and Zhihai Zhu
[1] Chaloupka J and Khaliullin G 2008 Phys. Rev. Lett. 100 016404
[2] Boris A et al. 2011 Science 332 937
[3] Li D et al. 2019 Nature 572 624
[4] Li D et al. 2020 Phys. Rev. Lett. 125 027001
[5] Zeng S et al. 2020 Phys. Rev. Lett. 125 147003
[6] Osada M et al. 2020 Phys. Rev. Mater. 4 121801
[7] Hepting M et al. 2020 Nat. Mater. 19 381
[8] Goodge B et al. 2021 Proc. Natl. Acad. Sci. USA 118 e2007683118
[9] Rossi M et al. 2020 arXiv:2011.00595 [cond-mat.str-el]
[10] Hayward M and Rosseinsky M 2003 Solid State Sci. 5 839
[11] Botana A and Norman M 2020 Phys. Rev. X 10 011024
[12] Hirsch J and Marsiglio F 2019 Physica C 566 1353534
[13] Jiang P et al. 2019 Phys. Rev. B 100 201106
[14] Nomura Y et al. 2019 Phys. Rev. B 100 205138
[15] Zhang G et al. 2019 Phys. Rev. B 100 020501
[16] Adhikary P et al. 2020 Phys. Rev. B 102 100501
[17] Karp J et al. 2020 Phys. Rev. X 10 021061
[18] Bandyopadhyay S et al. 2020 Phys. Rev. B 102 220502
[19] Chang J et al. 2020 Eur. Phys. J. B 93 220
[20] Choi M et al. 2020 Phys. Rev. B 101 020503
[21] Geisler B and Pentcheva R 2020 Phys. Rev. B 102 020502
[22] Gu Y et al. 2021 Chin. Phys. Lett. 38 017501
[23] Gu Y et al. 2020 Commun. Phys. 3 1
[24] He R et al. 2020 Phys. Rev. B 102 035118
[25] Ji C et al. 2020 Phys. Rev. Mater. 4 124804
[26] Jiang M et al. 2020 Phys. Rev. Lett. 124 207004
[27] Kapeghian J and Botana A 2020 Phys. Rev. B 102 205130
[28] Katukur V et al. 2020 Phys. Rev. B 102 241112
[29] Krishna J et al. 2020 Phys. Rev. B 102 224506
[30] Lang Z J et al. 2021 Phys. Rev. B 103 L180502
[31] Gao J C et al. 2020 Natl. Sci. Rev. nwaa218
[32] Lechermann F 2020 Phys. Rev. X 10 041002
[33] Lechermann F 2020 Phys. Rev. B 101 081110
[34] Leonov I et al. 2020 Phys. Rev. B 101 241108
[35] Liu Z et al. 2020 npj Quantum Mater. 5 31
[36] Nica E et al. 2020 Phys. Rev. B 102 020504
[37] Petocchi F et al. 2020 Phys. Rev. X 4 041047
[38] Ryee S et al. 2020 Phys. Rev. B 101 064513
[39] Sakakibara H et al. 2020 Phys. Rev. Lett. 125 077003
[40] Si L et al. 2020 Phys. Rev. Lett. 124 166402
[41] Wang Y et al. 2020 Phys. Rev. B 102 161118
[42] Wang Z et al. 2020 Phys. Rev. B 102 220501
[43] Werner P and Hoshino S 2020 Phys. Rev. B 101 041104
[44] Wu X et al. 2020 Phys. Rev. B 101 060504
[45] Wu X et al. 2020 arXiv:2008.06009 [cond-mat.supr-con]
[46] Zhang R et al. 2021 Commun. Phys. 4 118
[47] Zhang Y et al. 2020 Phys. Rev. B 102 195117
[48] Klett M et al. 2021 arXiv:2101.04689 [cond-mat.supr-con]
[49] Liu Z et al. 2021 Phys. Rev. B 103 045103
[50] Wan X et al. 2021 Phys. Rev. B 103 075123
[51] Osada M et al. 2020 Nano Lett. 20 5735
[52] Lee K et al. 2020 APL Mater. 8 041107
[53] Gu Q et al. 2020 Nat. Commun. 11 6027
[54] Xiang Y et al. 2021 Chin. Phys. Lett. 38 047401
[55] Wang B et al. 2021 Nat. Phys. 17 473
[56] Zhou X et al. 2020 Rare Met. 39 368
[57] Li Q et al. 2020 Commun. Mater. 1 16
[58] Wang B et al. 2020 Phys. Rev. Mater. 4 084409
[59] He C et al. 2020 arXiv:2010.11777 [cond-mat.supr-con]
[60] Cui Y et al. 2021 Chin. Phys. Lett. 38 067401
Viewed
Full text


Abstract