CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators |
Tian-Yi Zhang1, Qing Yan2,3, and Qing-Feng Sun2,3,4* |
1School of Physical Science and Technology, Soochow University, Suzhou 215006, China 2International Center for Quantum Material, School of Physics, Peking University, Beijing 100871, China 3Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
|
|
Cite this article: |
Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun 2021 Chin. Phys. Lett. 38 077303 |
|
|
Abstract We propose a new method to construct low-dimensional quantum devices consisting of the magnetic topological insulators. Unlike previous systems based on locally depleting two-dimensional electron gas in semiconductor heterojunctions, magnetization provides a simpler and rewriteable fabrication way. The motion of electrons can be manipulated through the domain wall formed by the boundary between different magnetic domains. Here, three devices designed by local magnetization are presented. For the quantum point contact, conductance exhibits quantized plateaus with the increasing silt width between two magnetic domains. For the quantum dot, conductance shows pronounced peaks as the change of gate voltage. Finally, for the Aharonov–Bohm ring, conductance oscillates periodically with the external magnetic field. Numerical results show that the transport of these local magnetization systems is identical to that of the previous systems based on depleting two-dimensional electron gas, and the only difference is the approach of construction. These findings may pave the way for realization of low-power-consumption devices based on magnetic domain walls.
|
|
Received: 29 March 2021
Published: 05 July 2021
|
|
PACS: |
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
73.21.La
|
(Quantum dots)
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant No. 2017YFA0303301), the National Natural Science Foundation of China (Grant Nos. 11921005 and 11574007), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and Beijing Municipal Science and Technology Commission, China (Grant No. Z191100007219013). |
|
|
[1] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 |
[2] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[3] | Liu C X, Qi X L, Dai X, Fang Z, and Zhang S C 2008 Phys. Rev. Lett. 101 146802 |
[4] | Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, and Fang Z 2010 Science 329 61 |
[5] | Thouless D J, Kohmoto M, Nightingale M P, and den Mijs M 1982 Phys. Rev. Lett. 49 405 |
[6] | Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959 |
[7] | Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, and Xue Q K 2013 Science 340 167 |
[8] | He K, Ma X C, Chen X, Lü L, Wang Y Y, and Xue Q K 2013 Chin. Phys. B 22 067305 |
[9] | Kou X F, Guo S T, Fan Y B, Pan L, Lang M R, Jiang M, Shao Q M, Nie Y X, Murata K, Tang J S, Wang Y, He L, Lee T K, Lee W L, and Wang K L 2014 Phys. Rev. Lett. 113 137201 |
[10] | Chang C Z, Zhao W W, Kim D Y, Zhang H J, Assaf B A, Heiman D, Zhang S C, Liu C X, Chan M H M, and Moodera J S 2015 Nat. Mater. 14 473 |
[11] | Sun H H and Jia J F 2017 Sci. Chin. Phys. Mech. & Astron. 60 057401 |
[12] | Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, and He K 2019 Chin. Phys. Lett. 36 076801 |
[13] | Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H, and Zhang Y B 2020 Science 367 895 |
[14] | Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H, and Xu Y 2019 Sci. Adv. 5 eaaw5685 |
[15] | Nazarov Y V and Blanter Y M 2009 Quantum Transport: Introduction To Nanoscience (Cambrigde: Cambridge University Press) |
[16] | Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217 |
[17] | Li J and Zhang D 2015 Chin. Phys. Lett. 32 047303 |
[18] | Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press) |
[19] | Yasuda K, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Kawasaki M, Kagawa F, and Tokura Y 2017 Science 358 1311 |
[20] | Hubert A and Schäfer R 1998 Magnetic Domains: The Analysis of Magnetic Microstructures (Berlin: Springer) |
[21] | Shen S Q 2012 Topological Insulators (Berlin: Springer) |
[22] | Zhou Y F, Jiang H, Xie X C, and Sun Q F 2017 Phys. Rev. B 95 245137 |
[23] | Resende B M D, Lima F C D, Miwa R H, Vernek E, and Ferreira G J 2017 Phys. Rev. B 96 161113(R) |
[24] | Araújo A L, Maciel R P, Dornelas R G F, Varjas D, and Ferreira G J 2019 Phys. Rev. B 100 205111 |
[25] | Zhou Y F, Hou Z, and Sun Q F 2018 Phys. Rev. B 98 165433 |
[26] | Yan Q, Zhou Y F, and Sun Q F 2020 Chin. Phys. B 29 097401 |
[27] | Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press) |
[28] | Asbóth J K, Oroszlány L, and Pá A 2015 A Short Course on Topological Insulators (Berlin: Springer) |
[29] | Gong M, Lu M, Liu H, Jiang H, Sun Q F, and Xie X C 2020 Phys. Rev. B 102 165425 |
[30] | Long W, Sun Q F, and Wang J 2008 Phys. Rev. Lett. 101 166806 |
[31] | Dai N and Sun Q F 2017 Phys. Rev. B 95 064205 |
[32] | Lee D H and Joannopoulos J D 1981 Phys. Rev. B 23 4988 |
[33] | Lee D H and Joannopoulos J D 1981 Phys. Rev. B 23 4997 |
[34] | Landauer R 1957 IBM J. Res. Dev. 1 223 |
[35] | Landauer R 1970 Philos. Mag. 21 863 |
[36] | Chu R L, Shi J, and Shen S Q 2011 Phys. Rev. B 84 085312 |
[37] | Chu R L, Li J, Jain J K, and Shen S Q 2009 Phys. Rev. B 80 081102(R) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|