CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Effective Hamiltonian Generator |
Yi Jiang1,2, Zhong Fang1, and Chen Fang1,3,4* |
1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4Kavli Institute for Theoretical Sciences, Chinese Academy of Sciences, Beijing 100190, China
|
|
Cite this article: |
Yi Jiang, Zhong Fang, and Chen Fang 2021 Chin. Phys. Lett. 38 077104 |
|
|
Abstract A $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ effective Hamiltonian is important for theoretical analysis in condensed matter physics. Based on the kdotp-symmetry package, we develop an upgraded package named as kdotp-generator. This generator takes in arbitrary magnetic symmetries with their representations and returns symmetry-allowed $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Hamiltonians. Using this package, we calculate $\boldsymbol{k}$$\cdot$$\boldsymbol{p}$ Hamiltonians for irreducible co-representations in 1651 magnetic space groups up to the third order, and their linear coupling to external fields including the electromagnetic field and the strain tensor. We hope that the package will facilitate related research in the future.
|
|
Received: 21 April 2021
Published: 07 June 2021
|
|
PACS: |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
81.05.Zx
|
(New materials: theory, design, and fabrication)
|
|
|
Fund: Supported by National Key R&D Program of China (Grant No. 2016YFA0302400), and Chinese Academy of Sciences (Grant No. XDB33000000). |
|
|
[1] | Bardeen J 1938 J. Chem. Phys. 6 367 |
[2] | Sampson J B and Seitz F 1940 Phys. Rev. 58 633 |
[3] | Luttinger J M and Kohn W 1955 Phys. Rev. 97 869 |
[4] | Dresselhaus G, Kip A F, and Kittel C 1955 Phys. Rev. 98 368 |
[5] | Kane E O 1956 J. Phys. Chem. Solids 1 82 |
[6] | Luttinger J M 1956 Phys. Rev. 102 1030 |
[7] | Kane E 1966 Semiconductors and Semimetals (Amsterdam: Elsevier) p 75 |
[8] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 |
[9] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[10] | Chiu C K, Teo J C Y, Schnyder A P, and Ryu S 2016 Rev. Mod. Phys. 88 035005 |
[11] | Armitage N P, Mele E J, and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 |
[12] | Zhang H, Liu C X, Qi X L, Dai X, Fang Z, and Zhang S C 2009 Nat. Phys. 5 438 |
[13] | Yu R, Zhang W, Zhang H J, Zhang S C, Dai X, and Fang Z 2010 Science 329 61 |
[14] | Xu G, Weng H, Wang Z, Dai X, and Fang Z 2011 Phys. Rev. Lett. 107 186806 |
[15] | Wan X, Turner A M, Vishwanath A, and Savrasov S Y 2011 Phys. Rev. B 83 205101 |
[16] | Burkov A, Hook M, and Balents L 2011 Phys. Rev. B 84 235126 |
[17] | Young S M, Zaheer S, Teo J C, Kane C L, Mele E J, and Rappe A M 2012 Phys. Rev. Lett. 108 140405 |
[18] | Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, and Fang Z 2012 Phys. Rev. B 85 195320 |
[19] | Hsieh T H, Lin H, Liu J, Duan W, Bansil A, and Fu L 2012 Nat. Commun. 3 982 |
[20] | Wang Z, Weng H, Wu Q, Dai X, and Fang Z 2013 Phys. Rev. B 88 125427 |
[21] | Weng H, Fang C, Fang Z, Bernevig B A, and Dai X 2015 Phys. Rev. X 5 011029 |
[22] | Wang Z, Alexandradinata A, Cava R J, and Bernevig B A 2016 Nature 532 189 |
[23] | Ruan J W, Jian S K, Yao H, Zhang H J, Zhang S C, and Xing D Y 2016 Nat. Commun. 7 11136 |
[24] | Ruan J, Jian S K, Zhang D, Yao H, Zhang H, Zhang H J, Zhang S C, and Xing D Y 2016 Phys. Rev. Lett. 116 226801 |
[25] | Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, and Bernevig B A 2015 Nature 527 495 |
[26] | Bradlyn B, Cano J, Wang Z, Vergniory M, Felser C, Dai X, and Bernevig B A 2016 Science 353 aaf5037 |
[27] | Gresch D, Wu Q, Winkler G W, and Soluyanov A A 2017 New J. Phys. 19 035001 |
[28] | Yang J, Liu Z X, and Fang C 2020 arXiv:2009.07864 [cond-mat.mes-hall] |
[29] | Yang J, Fang C, and Liu Z X 2021 arXiv:2101.01733 [cond-mat.mes-hall] |
[30] | Yang Z Y, Yang J, Fang C, and Liu Z X 2021 arXiv:2101.01830 [math-ph] |
[31] | Voon L C L Y and Willatzen M 2009 The kp Method: Electronic Properties of Semiconductors (Springer Science & Business Media) |
[32] | Gresch D 2018 Ph.D. thesis (ETH Zurich) |
[33] | Bradley C J and Davies B L 1968 Rev. Mod. Phys. 40 359 |
[34] | Aroyo M I, Perez-Mato J M, Capillas C, Kroumova E, Ivantchev S, Madariaga G, Kirov A, and Wondratschek H 2006 Z. Kristallogr. - Cryst. Mater. 221 15 |
[35] | Aroyo M I, Kirov A, Capillas C, Perez-Mato J, and Wondratschek H 2006 Acta Crystallogr. Sect. A: Found. Crystallogr. 62 115 |
[36] | Aroyo M I, Perez-Mato J, Orobengoa D, Tasci E, de la Flor G, and Kirov A 2011 Bulg. Chem. Commun. 43 183 |
[37] | Elcoro L, Wieder B J, Song Z, Xu Y, and Bradlyn B 2020 arXiv:2010.00598 [cond-mat.mes-hall] |
[38] | Bradley C and Cracknell A 2009 The Mathematical Theory of Symmetry in Solids: Representation Theory for Point Groups and Space Groups (Oxford: Oxford University Press) |
[39] | Recently, the Bilbao website has updated the coirreps of 1651 MSGs.[37] While we use our homemade code to generate the coirreps of MSGs, the matrix forms are not exactly the same as those on the Bilbao website, especially for some type-3 MSGs. This is because the explict forms of high-dimensional representation depend on the choice of gauge. |
[40] | Yu Z M, Zhang Z, Liu G B, Wu W, and Li X P 2021 arXiv:2102.01517 [cond-mat.mes-hall] |
[41] | Tang F and Wan X 2021 arXiv:2103.08477 [cond-mat.mtrl-sci] |
[42] | Zhan G, Shi M, Yang Z, and Zhang H 2021 arXiv:2104.13776 [cond-mat.mtrl-sci] |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|