ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock |
Mo-Juan Yin1†, Tao Wang2†, Xiao-Tong Lu1, Ting Li1, Ye-Bing Wang1, Xue-Feng Zhang2*, Wei-Dong Li3*, Augusto Smerzi3,4*, and Hong Chang1,5* |
1Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China 2Department of Physics, and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China 3Department of Physics and Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China 4QSTAR, INO-CNR, and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy 5School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Mo-Juan Yin, Tao Wang, Xiao-Tong Lu et al 2021 Chin. Phys. Lett. 38 073201 |
|
|
Abstract We periodically modulate the lattice trapping potential of a $^{87}$Sr optical clock to Floquet engineer the clock transition. In the context of atomic gases in lattices, Floquet engineering has been used to shape the dispersion and topology of Bloch quasi-energy bands. Differently from these previous works manipulating the external (spatial) quasi-energies, we target the internal atomic degrees of freedom. We shape Floquet spin quasi-energies and measure their resonance profiles with Rabi spectroscopy. We provide the spectroscopic sensitivity of each band by measuring the Fisher information and show that this is not depleted by the Floquet dynamical modulation. The demonstration that the internal degrees of freedom can be selectively engineered by manipulating the external degrees of freedom inaugurates a novel device with potential applications in metrology, sensing and quantum simulations.
|
|
Received: 08 May 2021
Published: 08 June 2021
|
|
PACS: |
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
32.80.Wr
|
(Other multiphoton processes)
|
|
31.15.Lc
|
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 61775220, 11804034, 11874094, 12047564, 11874247, 11874246), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB21030100 and XDB35010202), the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11647165), the Fundamental Research Funds for the Central Universities (Grant No. 2020CDJQY-Z003), the National Key R&D Program of China (Grant No. 2017YFA0304501), the 111 Project (Grant No. D18001), the Hundred Talent Program of the Shanxi Province (2018), and the EMPIR-USOQS, EMPIR Project co-funded by the European Unions Horizon2020 Research and Innovation Programme and the EMPIR Participating States. |
Just Accepted Date: 18 June 2021
Online First Date: 08 June 2021
|
|
[1] | Rudner M S and Lindner N H 2020 Nat. Rev. Phys. 2 229 |
[2] | Eckardt A 2017 Rev. Mod. Phys. 89 011004 |
[3] | Bukov M, D'Alessio L, and Polkovnikov A 2015 Adv. Phys. 64 139 |
[4] | Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, and Szameit A 2013 Nature 496 196 |
[5] | Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, Fowler A, Jeffrey E, Kelly J, Lucero E, Mutus J, O'Malley P J J, Neeley M, Quintana C, Sank D, Vainsencher A, Wenner J, White T, Kapit E, Neven H, and Martinis J 2017 Nat. Phys. 13 146 |
[6] | Lignier H, Sias C, Ciampini D, Singh Y, Zenesini A, Morsch O, and Arimondo E 2007 Phys. Rev. Lett. 99 220403 |
[7] | Zenesini A, Lignier H, Ciampini D, Morsch O, and Arimondo E 2009 Phys. Rev. Lett. 102 100403 |
[8] | Struck J, lschlger C, Le Targat R, Soltan-Panahi P, Eckardt A, Lewenstein M, Windpassinger P, and Sengstock K 2011 Science 333 996 |
[9] | Grg F, Messer M, Sandholzer K, Jotzu G, Desbuquois R, and Esslinger T 2018 Nature 553 481 |
[10] | Struck J, Weinberg M, lschlger C, Windpassinger P, Simonet J, Sengstock K, Hppner R, Hauke P, Eckardt A, Lewenstein M, and Mathey L 2013 Nat. Phys. 9 738 |
[11] | Cooper N R, Dalibard J, and Spielman I B 2019 Rev. Mod. Phys. 91 015005 |
[12] | Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, and Bloch I 2013 Phys. Rev. Lett. 111 185301 |
[13] | Miyake H, Siviloglou G A, Kennedy C J, Burton W C, and Ketterle W 2013 Phys. Rev. Lett. 111 185302 |
[14] | Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, and Esslinger T 2014 Nature 515 237 |
[15] | Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, and Ye J 2016 Phys. Rev. D 94 124043 |
[16] | Norcia M A, Cline J R K, and Thompson J K 2017 Phys. Rev. A 96 042118 |
[17] | Katori H, Takamoto M, Pal'chikov V G, and Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005 |
[18] | Cirac J I and Zoller P 2012 Nat. Phys. 8 264 |
[19] | Bloch I, Dalibard J, and Nascimbène S 2012 Nat. Phys. 8 267 |
[20] | Gross C and Bloch I 2017 Science 357 995 |
[21] | Pezzè L, Smerzi A, Oberthaler M K, Schmied R, and Treutlein P 2018 Rev. Mod. Phys. 90 035005 |
[22] | McGrew W F, Zhang X, Fasano R J, Schffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, and Ludlow A D 2018 Nature 564 87 |
[23] | Zhang R, Cheng Y, Zhang P, and Zhai H 2020 Nat. Rev. Phys. 2 213 |
[24] | Kolkowitz S, Bromley S L, Bothwell T et al. 2017 Nature 542 66 |
[25] | Sillanpaa M, Lehtinen T, Paila A, Makhlin Y, and Hakonen P 2006 Phys. Rev. Lett. 96 187002 |
[26] | Shevchenko S N, Ashhab S, and Nori F 2010 Phys. Rep. 492 1 |
[27] | Pezzè L and Smerzi A 2014 Quantum Theory of Phase Estimation, Atom Interferometry, Proceedings of the International School of Physics “Enrico Fermi”, Course 188, edited by Tino G M and Kasevich M A Varenna, (Amsterdam: IOS Press) pp 691–741 |
[28] | Giovannetti V, Lloyd S, and Maccone L 2011 Nat. Photon. 5 222 |
[29] | Takamoto M and Katori H 2003 Phys. Rev. Lett. 91 223001 |
[30] | Takamoto M, Hong F L, Higashi R, and Katori H 2005 Nature 435 321 |
[31] | See the Supplemental Material for more details about experimental process, theoretical model, spectroscopy calculation, extraction of experiment parameters and Fisher information. |
[32] | Mandel O, Greiner M, Widera A, Rom T, Hansch T W, and Bloch I 2003 Phys. Rev. Lett. 91 010407 |
[33] | Dai H N, Yang B, Reingruber A, Xu X F, Jiang X, Chen Y A, Yuan Z S, Pan J W 2016 Nat. Phys. 12 783 |
[34] | Wang Y B, Lu X T, Lu B Q, Kong D H, and Chang H 2018 Appl. Sci. 8 2194 |
[35] | Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M, and Ye J 2009 Phys. Rev. A 80 052703 |
[36] | Rihele F 2004 Frequency Standards: Basics and Applications (Berlin: Wiley-VCH) chap 3 p 60 |
[37] | Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G, and Wineland D J 1993 Phys. Rev. A 47 3554 |
[38] | Chin C, Grimm R, Julienne P, and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 |
[39] | Pezzè L and Smerzi A 2009 Phys. Rev. Lett. 102 100401 |
[40] | Pezzè L, Li Y, Li W D, and Smerzi A 2016 Proc. Natl. Acad. Sci. USA 113 11459 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|