Chin. Phys. Lett.  2021, Vol. 38 Issue (6): 068102    DOI: 10.1088/0256-307X/38/6/068102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effect of Pt Interlayer on Low Resistivity Ohmic Contact to p-InP Layer and Its Optimization
Lili Han1,2,3, Chunhua Du1,3,5, Ziguang Ma1,3, Yang Jiang1,3, Kanglin Xiong6, Wenxin Wang1,3,4, Hong Chen1,3,4, Zhen Deng1,3,5*, and Haiqiang Jia1,3,4*
1Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Center of Materials and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4Songshan Lake Materials Laboratory, Dongguan 523808, China
5The Yangtze River Delta Physics Research Center, Liyang 213000, China
6NANO-X, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Cite this article:   
Lili Han, Chunhua Du, Ziguang Ma et al  2021 Chin. Phys. Lett. 38 068102
Download: PDF(1027KB)   PDF(mobile)(2582KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The contact characteristic between p-InP and metal plays an important role in InP-related optoelectronic and microelectronic device applications. We investigate the low-resistance Au/Pt/Ni and Au/Ni ohmic contacts to p-InP based on the solid phase regrowth principle. The lowest specific contact resistivity of Au(100 nm)/Pt(115 nm)/Ni (50 nm) can reach $2.64 \times 10^{-6}\,\Omega \cdot$cm$^{2}$ after annealing at 380 ℃ for 1 min, while the contact characteristics of Au/Ni deteriorated after annealing from 340 ℃ to 480 ℃ for 1 min. The results of scanning electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy show that the Pt layer is an important factor in improving the contact characteristics. The Pt layer prevents the diffusion of In and Au, inhibits the formation of Au$_{3}$In metal compounds, and prevents the deterioration of the ohmic contact. The metal structures and optimized annealing process is expected to be helpful for obtaining high-performance InP-related devices.
Received: 17 January 2021      Published: 15 May 2021
PACS:  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  66.30.-h (Diffusion in solids)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 62004218, 61704008, 61804176, and 61991441), Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2021005), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB01000000), and Jiangsu Science and Technology Plan (Grant No. BK20180255). This work is also supported by the Center for Clean Energy, Institute of Physics, Chinese Academy of Sciences.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/6/068102       OR      https://cpl.iphy.ac.cn/Y2021/V38/I6/068102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lili Han
Chunhua Du
Ziguang Ma
Yang Jiang
Kanglin Xiong
Wenxin Wang
Hong Chen
Zhen Deng
and Haiqiang Jia
[1] Andresen B F et al. 2005 Proc. SPIE 5783 12
[2] Chen J and Zhu M 2016 Appl. Phys. A 122 12
[3] Xiang Y et al. 2015 Opt. Express 23 15680
[4] Muttlak S G et al. 2019 IET Optoelectron. 13 144
[5] Niu B et al. 2015 Chin. Phys. Lett. 32 077304
[6] Zhang Y G et al. 2018 Chin. Phys. B 27 097203
[7] Huckridge D A et al. 2013 Proc. SPIE 8896 88960C
[8] Yuan P et al. 2014 Proc. SPIE 9070 907007
[9] Hoogeveen R W M et al. 2001 Infrared Phys. & Technol. 42 1
[10] MacDougal M et al. 2009 Proc. SPIE 7298 72983F
[11] Wang Y D and Chen J 2018 Chin. Phys. B 27 128102
[12] Park M H et al. 1997 Appl. Phys. Lett. 70 1
[13] Hasenberg T C and Garmire E 1987 J. Appl. Phys. 61 808
[14] Wang L C et al. 1995 Appl. Phys. Lett. 66 3310
[15] Asamizu H et al. 2000 Appl. Surf. Sci. 159–160 174
[16] Fatemi N S and Weizer V G 1995 J. Appl. Phys. 77 5241
[17] Silpa D S et al. 2015 Indian J. Phys. 90 399
[18]Li B C, Wang Y T, and Zhuang Y 1998 J. Semicond. 19 398 (in Chinese)
[19] Cai Y et al. 2007 Proc. SPIE 6835 68350D
[20] Katz A et al. 1992 IEEE Trans. Electron Devices 39 184
[21] Stremsdoerfer G, Wang Y, Clechet P, and Martin J R 1990 J. Electrochem. Soc. 137 3317
[22] Okamura M and Kobayashi T 1980 Jpn. J. Appl. Phys. 19 2151
[23] Jayne D T, Fatemi N S, and Weizer V G 1991 J. Vacuum Sci. Technol. A: Vacuum Surf. Films 9 1410
[24] Barnard W O et al. 1992 Thin Solid Films 215 42
[25] Weizer V G and Fatemi N S 1990 J. Appl. Phys. 68 2275
Viewed
Full text


Abstract