CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Anisotropic Magnon–Magnon Coupling in Synthetic Antiferromagnets |
Wei He1*, Z. K. Xie1, Rui Sun1, Meng Yang1, Yang Li1, Xiao-Tian Zhao2*, Wei Liu2, Z. D. Zhang2, Jian-Wang Cai1, Zhao-Hua Cheng1, and Jie Lu3* |
1State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024, China
|
|
Cite this article: |
Wei He, Z. K. Xie, Rui Sun et al 2021 Chin. Phys. Lett. 38 057502 |
|
|
Abstract Magnon–magnon coupling in synthetic antiferromagnets advances it as hybrid magnonic systems to explore the quantum information technologies. To induce magnon–magnon coupling, the parity symmetry between two magnetization needs to be broken. Here we experimentally demonstrate a convenient method to break the parity symmetry by the asymmetric structure. We successfully introduce a magnon–magnon coupling in Ir-based synthetic antiferromagnets CoFeB(10 nm)/Ir($t_{_{\scriptstyle \rm Ir}}=0.6$ nm, 1.2 nm)/CoFeB(13 nm). Remarkably, we find that the weakly uniaxial anisotropy field ($\sim $20 Oe) makes the magnon–magnon coupling anisotropic. The coupling strength presented by a characteristic anticrossing gap varies in the range between 0.54 GHz and 0.90 GHz for $t_{_{\scriptstyle \rm Ir}} =0.6$ nm, and between 0.09 GHz and 1.4 GHz for $t_{_{\scriptstyle \rm Ir}} = 1.2$ nm. Our results demonstrate a feasible way to induce magnon–magnon coupling by an asymmetric structure and tune the coupling strength by varying the direction of in-plane magnetic field. The magnon–magnon coupling in this highly tunable material system could open exciting perspectives for exploring quantum-mechanical coupling phenomena.
|
|
Received: 15 March 2021
Published: 02 May 2021
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 51871235, 51671212, 52031014, 51771198, and 51801212), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300701, 2017YFB0702702, and 2017YA0206302), and the Key Research Program of Frontier Sciences, CAS (Grant Nos. QYZDJ-SSW-JSC023, KJZD-SW-M01, and ZDYZ2012-2). J.L. acknowledges support from the Natural Science Foundation for Distinguished Young Scholars of Hebei Province of China (S&T Program of Hebei, Grant No. A2019205310). |
|
|
[1] | Yang Q, Wang L, Zhou Z, Wang L, Zhang Y, Zhao S, Dong G, Cheng Y, Min T, Hu Z, Chen W, Xia K, and Liu M 2018 Nat. Commun. 9 991 |
[2] | Li S, Li Q, Xu J, Yan S, Miao G X, Kang S, Dai Y, Jiao J, and Lü Y 2016 Adv. Funct. Mater. 26 3738 |
[3] | Kamimaki A, Iihama S, Suzuki K Z, Yoshinaga N, and Mizukami S 2020 Phys. Rev. Appl. 13 044036 |
[4] | Slonczewski J C 1993 J. Magn. Magn. Mater. 126 374 |
[5] | Ma Q, Li Y, Choi Y, Chen W C, Han S J, and Chien C L 2020 Appl. Phys. Lett. 117 172403 |
[6] | Liu Y, Zhou B, and Zhu J G 2019 Sci. Rep. 9 325 |
[7] | Huai Y, Gan H, Wang Z, Xu P, Hao X, Yen B K, Malmhall R, Pakala N, Wang C, Zhang J, Zhou Y, Jung D, Satoh K, Wang R, Xue L, and Pakala M 2018 Appl. Phys. Lett. 112 092402 |
[8] | Kamimaki A, Iihama S, Taniguchi T, and Mizukami S 2019 Appl. Phys. Lett. 115 132402 |
[9] | Martin T, Woltersdorf G, Stamm C, Dürr H A, Mattheis R, Back C H, and Bayreuther G 2008 J. Appl. Phys. 103 07B112 |
[10] | Liu X M, Nguyen H T, Ding J, Cottam M G, and Adeyeye A O 2014 Phys. Rev. B 90 064428 |
[11] | Lindner J and Baberschke K 2003 J. Phys.: Condens. Matter 15 S465 |
[12] | Belmeguenai M, Martin T, Woltersdorf G, Bayreuther G, Baltz V, Suszka A K, and Hickey B J 2008 J. Phys.: Condens. Matter 20 345206 |
[13] | Wang C, Zhang S, Qiao S, Du H, Liu X, Sun R, Chu X M, Miao G X, Dai Y, Kang S, Yan S, and Li S 2018 Appl. Phys. Lett. 112 192401 |
[14] | Waring H J, Johansson N A B, Vera-Marun I J, and Thomson T 2020 Phys. Rev. Appl. 13 034035 |
[15] | Sud A, Zollitsch C W, Kamimaki A, Dion T, Khan S, Iihama S, Mizukami S, and Kurebayashi H 2020 Phys. Rev. B 102 100403 |
[16] | Shiota Y, Taniguchi T, Ishibashi M, Moriyama T, and Ono T 2020 Phys. Rev. Lett. 125 017203 |
[17] | Li Y, Zhang W, Tyberkevych V, Kwok W K, Hoffmann A, and Novosad V 2020 J. Appl. Phys. 128 130902 |
[18] | Sklenar J and Zhang W 2020 arXiv:2008.01298v1 [cond-mat.mtrl-sci] |
[19] | MacNeill D, Hou J T, Klein D R, Zhang P, Jarillo-Herrero P, and Liu L 2019 Phys. Rev. Lett. 123 047204 |
[20] | Li M, Lu J, and He W 2021 Phys. Rev. B 103 064429 |
[21] | AlQassem B M, Hamad B A, Khalifeh J M, and Demangeat C 2008 Eur. Phys. J. B 62 433 |
[22] | Luo Y, Moske M, and Samwer K 1998 Europhys. Lett. 42 565 |
[23] | Sun R, Li Y, Xie Z K, Li Y, Zhao X T, Liu W, Zhang Z D, Zhu T, Cheng Z H, and He W 2020 J. Magn. Magn. Mater. 497 165971 |
[24] | Soumyanarayanan A, Raju M, Gonzalez O A L, Tan A K C, Im M Y, Petrović A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, and Panagopoulos C 2017 Nat. Mater. 16 898 |
[25] | Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, and Fert A 2016 Nat. Nanotechnol. 11 444 |
[26] | Gabor M S, Petrisor T, Mos R B, Nasui M, Tiusan C, and Petrisor T 2017 J. Phys. D 50 465004 |
[27] | Wigen P E, Zhang Z, Zhou L, Ye M, and Cowen J A 1993 J. Appl. Phys. 73 6338 |
[28] | Rezende S M, Chesman C, Lucena M A, Azevedo A, de Aguiar F M, and Parkin S S P 1998 J. Appl. Phys. 84 958 |
[29] | Slonczewski J C 1991 Phys. Rev. Lett. 67 3172 |
[30] | Liensberger L, Kamra A, Maier-Flaig H, Geprägs S, Erb A, Goennenwein S T B, Gross R, Belzig W, Huebl H, and Weiler M 2019 Phys. Rev. Lett. 123 117204 |
[31] | Maier-Flaig H, Goennenwein S T B, Ohshima R, Shiraishi M, Gross R, Huebl H, and Weiler M 2018 Rev. Sci. Instrum. 89 076101 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|