Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 057402    DOI: 10.1088/0256-307X/38/5/057402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Highly Robust Reentrant Superconductivity in CsV$_{3}$Sb$_{5}$ under Pressure
Xu Chen1†, Xinhui Zhan2†, Xiaojun Wang2, Jun Deng1, Xiao-Bing Liu2*, Xin Chen2, Jian-Gang Guo1,3*, and Xiaolong Chen1,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
Cite this article:   
Xu Chen, Xinhui Zhan, Xiaojun Wang et al  2021 Chin. Phys. Lett. 38 057402
Download: PDF(3241KB)   PDF(mobile)(6104KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the superconducting (SC) property and high-robustness of structural stability of kagome CsV$_{3}$Sb$_{5}$ under in situ high pressures. For the initial SC-I phase, its $T_{\rm c}$ is quickly enhanced from 3.5 K to 7.6 K and then totally suppressed at $P \sim 10$ GPa. With further increasing pressure, an SC-II phase emerges at $P \sim 15$ GPa and persists up to 100 GPa. The $T_{\rm c}$ rapidly increases to the maximal value of 5.2 K at $P=53.6$ GPa and slowly decreases to 4.7 K at $P=100$ GPa. A two-dome-like variation of $T_{\rm c}$ in CsV$_{3}$Sb$_{5}$ is concluded here. The Raman measurements demonstrate that weakening of $E_{\rm 2g}$ mode and strengthening of $E_{\rm 1g}$ mode occur without phase transition in the SC-II phase, which is supported by the results of phonon spectra calculations. Electronic structure calculations reveal that exertion of pressure may bridge the gap of topological surface nontrivial states near $E_{\rm F}$, i.e., disappearance of $Z_{2}$ invariant. Meanwhile, the Fermi surface enlarges significantly, consistent with the increased carrier density. The findings here suggest that the change of electronic structure and strengthened electron-phonon coupling should be responsible for the pressure-induced reentrant SC.
Received: 29 March 2021      Published: 20 April 2021
PACS:  74.25.Dw (Superconductivity phase diagrams)  
  74.62.Fj (Effects of pressure)  
  74.25.nd (Raman and optical spectroscopy)  
  71.18.+y}  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304700, 2018YFE0202601, and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 51922105, 11804184, 11974208, and 51772322), the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH013), the Beijing Natural Science Foundation (Grant No. Z200005), and the Shandong Provincial Natural Science Foundation (Grant Nos. ZR2020YQ05, ZR2019MA054, and 2019KJJ020).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/057402       OR      https://cpl.iphy.ac.cn/Y2021/V38/I5/057402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xu Chen
Xinhui Zhan
Xiaojun Wang
Jun Deng
Xiao-Bing Liu
Xin Chen
Jian-Gang Guo
and Xiaolong Chen
[1] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C, and Lee Y S 2012 Nature 492 406
[2] Sachdev S 1992 Phys. Rev. B 45 12377
[3] Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003
[4] Bilitewski T and Moessner R 2018 Phys. Rev. B 98 235109
[5] Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R, and Valent R 2014 Nat. Commun. 5 4261
[6] Wang W S, Li Z Z, Xiang Y Y, and Wang Q H 2013 Phys. Rev. B 87 115135
[7] Ko W H, Lee P A, and Wen X G 2009 Phys. Rev. B 79 214502
[8] O'Brien A, Pollmann F, and Fulde P 2010 Phys. Rev. B 81 235115
[9] Isakov S V, Wessel S, Melko R G, Sengupta K, and Kim Y B 2006 Phys. Rev. Lett. 97 147202
[10] Yan S M, Huse D A, and White S R 2011 Science 332 1173
[11] Kiesel M L, Platt C, and Thomale R 2013 Phys. Rev. Lett. 110 126405
[12] Guo H M and Franz M 2009 Phys. Rev. B 80 113102
[13] Rüegg A and Fiete G A 2011 Phys. Rev. B 83 165118
[14] Yu S L and Li J X 2012 Phys. Rev. B 85 144402
[15] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M, and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[16] Ortiz B R and Sarte P M 2020 arXiv:2012.09097 [cond-mat.supr-con]
[17] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H, and Lei H C 2021 Chin. Phys. Lett. 38 037403
[18] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F, and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[19] Zhao H, Li H, Ortiz B R, Teicher S M L, Park T, Ye M, Wang Z, Balents L, Wilson S D, and Zeljkovic I 2021 arXiv:2103.03118 [cond-mat.supr-con]
[20] Chen H, Yang H T, Hu B, Zhao Z, Yuan J, Xing Y Q, Qian G J, Huang Z H, Li G, Ye Y H, Yin Q W, Gong C S, Tu Z J, Lei H C, Ma S, Zhang H, Ni S L, Tan H X, Shen C M, Dong X L, Yan B H, Wang Z Q, and Gao H J 2021 arXiv:2103.09188 [cond-mat.supr-con]
[21] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, He J, Liu X, Zhang S S, Chang G, Belopolski I, Zhang Q, Hossain M S, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Xu G, Wang Z, Neupert T, Wilson S D, and Hasan M Z 2020 arXiv:2012.15709 [cond-mat.supr-con]
[22] Li H X, Zhang T T, Pai Y Y, Marvinney C, Said A, Yilmaz T, Yin Q, Gong C, Tu Z, Vescovo E, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B, and Miao H 2021 arXiv:2103.09769 [cond-mat.supr-con]
[23] Liang Z W, Hou X Y, Ma W R, Zhang F, Wu P, Zhang Z Y, Yu F H, Ying J J, Jiang K, Shan L, Wang Z Y, and Chen X H 2021 arXiv:2103.04760 [cond-mat.supr-con]
[24] Yang S Y, Wang Y J, Ortiz B R et al. 2020 Sci. Adv. 6 eabb6003
[25] Yu F H, Wu T, Wang Z Y, Lei B, Zhuo W Z, Ying J J, and Chen X H 2021 arXiv:2102.10987 [cond-mat.supr-con]
[26] Kenney E M, Ortiz B R, Wang C, Wilson S D, and Graf M J 2021 J. Phys.: Condens. Matter (in press)
[27] Zhao C C, Wang L S, Xia W, Yin Q W, Ni J M, Huang Y Y, Tu C P, Tao Z C, Tu Z J, Gong C S, Lei H C, Guo Y F, Yang X F, and Li S Y 2021 arXiv:2102.08356 [cond-mat.supr-con]
[28] Wang Y, Yang S, Sivakumar P K, Ortiz B R, Teicher S M L, Wu H, Srivastava A K, Garg C, Liu D, Parkin S S P, Toberer E S, McQueen T, Wilson S D, and Ali M N 2020 arXiv:2012.05898 [cond-mat.supr-con]
[29] Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, and Chu C W 1987 Phys. Rev. Lett. 58 908
[30] Eggert J H, Hu J Z, Mao H K, Beauvais L, Meng R L, and Chu C W 1994 Phys. Rev. B 49 15299
[31] Jia Y T, Gong C S, Liu Y X et al. 2020 Chin. Phys. Lett. 37 097404
[32] Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M, and Hosono H 2008 Nature 453 376
[33] Sun L L, Chen X J, Guo J, Gao P W, Huang Q Z, Wang H D, Fang M H, Chen X L, Chen G F, Wu Q, Zhang C, Gu D C, Dong X L, Wang L, Yang K, Li A G, Dai X, Mao H K, and Zhao Z X 2012 Nature 483 67
[34] Liu Z Y, Dong Q X, Shan P F et al. 2020 Chin. Phys. Lett. 37 047102
[35] Chen K Y, Wang N N, Yin Q W, Tu Z J, Gong C S, Sun J P, Lei H C, Uwatoko Y, and Cheng J G 2021 arXiv:2102.09328 [cond-mat.supr-con]
[36] Zhang Z Y, Chen Z, Zhou Y, Yuan Y F, Wang S Y, Zhang L L, Zhu X D, Zhou Y H, Chen X L, Zhou J H, and Yang Z R 2021 arXiv:2103.12507 [cond-mat.supr-con]
[37] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[38] Lich H L 1989 Phys. Rev. Lett. 62 1201
[39] Vladimir I, Anisimov J Z, and Ole K 1991 Phys. Rev. B 44 943
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Kresse G, Furthmüller J, and Hafner J 1994 Phys. Rev. B 50 13181
[42] Payne M C, Teter M P, Allan D C, Arias T, and Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045
[43] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Parlinski K, Li Z Q, and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[45] Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461
[46] Maintz S, Deringer V L, Tchougreeff A L, and Dronskowski R 2016 J. Comput. Chem. 7 1030
[47] Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, and Cheng J G 2018 Nat. Commun. 9 380
[48] Shahi P, Sun J P, Wang S H, Jiao Y Y, Chen K Y, Sun S S, Lei H C, Uwatoko Y, Wang B S, and Cheng J G 2018 Phys. Rev. B 97 020508(R)
[49] Guo J, Chen X J, Dai J H, Zhang C, Guo J G, Chen X L, Wu Q, Gu D C, Gao P W, Yang L H, Yang K, Dai X, Mao H K, Sun L L, and Zhao Z X 2012 Phys. Rev. Lett. 108 197001
[50] Huang C, Guo J, Zhao K, Cui F, Qin S S, Mu Q G, Zhou Y Z, Cai S, Yang C L, Long S J, Yang K, Li A G, Wu Q, Ren Z A, Hu J P, and Sun L L 2021 Phys. Rev. Mater. 5 L021801
[51] Nakatsuji S, Kuga K, Machida Y, Tayama T, Sakakibara T, Karaki Y, Ishimoto H, Yonezawa S, Maeno Y, Pearson E, Lonzarich G G, Balicas L, Lee H, and Fisk Z 2008 Nat. Phys. 4 603
[52] Luo Y, Pourovskii L, Rowley S E, Li Y, Feng C, Georges A, Dai J, Cao G, Xu Z, Si Q, and Ong N P 2014 Nat. Mater. 13 777
[53] Amon A, Svanidze E, Cardoso-Gil R, Wilson M N, Rosner H, Bobnar M, Schnelle W, Lynn J W, Gumeniuk R, Hennig C, Luke G M, Borrmann H, Leithe-Jasper A, and Grin Y 2018 Phys. Rev. B 97 014501
[54] Tan H, Liu Y Z, Wang Z Q, and Yan B H 2021 arXiv:2103.06325 [cond-mat.supr-con]
[55] Pei C Y, Xia Y Y Y, Wu J Z et al. 2020 Chin. Phys. Lett. 37 066401
[56] Schoop L M, Xie L S, Chen R, Gibson Q D, Lapidus S H, Kimchi I, Hirschberger M, Haldolaarachchige N, Ali M N, Belvin C A, Liang T, Neaton J B, Ong N P, Vishwanath A, and Cava R J 2015 Phys. Rev. B 91 214517
[57] Nayak J, Wu S C, Kumar N, Shekhar C, Singh S, Fink J, Rienks E E, Fecher G H, Parkin S S, Yan B H, and Felser C 2017 Nat. Commun. 8 13942
Viewed
Full text


Abstract