CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Magnus Hall Effect in Two-Dimensional Materials |
Rui-Chun Xiao1,2,3, Zibo Wang4,5, Zhi-Qiang Zhang2, Junwei Liu6*, and Hua Jiang2,3* |
1Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China 2School of Physical Science and Technology, Soochow University, Suzhou 215006, China 3Institute for Advanced Study, Soochow University, Suzhou 215006, China 4College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China 5Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China 6Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
|
|
Cite this article: |
Rui-Chun Xiao, Zibo Wang, Zhi-Qiang Zhang et al 2021 Chin. Phys. Lett. 38 057301 |
|
|
Abstract The Magnus Hall effect (MHE) is a new type of linear-response Hall effect, recently proposed to appear in two-dimensional (2D) nonmagnetic systems at zero magnetic field in the ballistic limit. The MHE arises from a self-rotating Bloch electron moving under a gradient-electrostatic potential, analogous to the Magnus effect in the macrocosm. Unfortunately, the MHE is usually accompanied by a trivial transverse signal, which hinders its experimental observation. We systematically investigate the material realization and experimental measurement of the MHE, based on symmetry analysis and first-principles calculations. It is found that both the out-of-plane mirror and in-plane two-fold symmetries can neutralize the trivial transverse signal to generate clean MHE signals. We choose two representative 2D materials, monolayer MoS$_2$, and bilayer WTe$_2$, to study the quantitative dependency of MHE signals on the direction of the electric field. The results are qualitatively consistent with the symmetry analysis, and suggest that an observable MHE signal requires giant Berry curvatures. Our results provide detailed guidance for the future experimental exploration of MHE.
|
|
Received: 11 January 2021
Published: 02 May 2021
|
|
PACS: |
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
|
Fund: Supported by the National Basic Research Program of China (Grant No. 2019YFA0308403), the National Natural Science Foundation of China (Grant Nos. 11822407, 11947212, 11704348, and NSFC20SC07), the China Postdoctoral Science Foundation (Grant No. 2018M640513), and the Hong Kong Research Grants Council (Grant Nos. 26302118, 16305019, and N_HKUST626/18). |
|
|
[1] | Nagaosa N, Sinova J, Onoda S, MacDonald A H, and Ong N P 2010 Rev. Mod. Phys. 82 1539 |
[2] | Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R, Ogasawara T, Yamada H, Kawasaki M, Tokura Y, and Terakura K 2003 Science 302 92 |
[3] | Chang M C and Niu Q 1995 Phys. Rev. Lett. 75 1348 |
[4] | Chang M C and Niu Q 1996 Phys. Rev. B 53 7010 |
[5] | Udagawa M and Bergholtz E J 2016 Phys. Rev. Lett. 117 086401 |
[6] | Li S, Lu J, Wen L J, Pan D, Wang H L, Wei D H, and Zhao J H 2020 Chin. Phys. Lett. 37 077303 |
[7] | Shi G, Zhang M, Yan D, Feng H, Yang M, Shi Y, and Li Y 2020 Chin. Phys. Lett. 37 047301 |
[8] | Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806 |
[9] | Kang K, Li T, Sohn E, Shan J, and Mak K F 2019 Nat. Mater. 18 324 |
[10] | Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Mier V A M, Wu S, Du Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, and Jarillo-Herrero P 2019 Nature 565 337 |
[11] | Xu S Y, Ma Q, Shen H, Fatemi V, Wu S, Chang T R, Chang G, Valdivia A M M, Chan C K, Gibson Q D, Zhou J, Liu Z, Watanabe K, Taniguchi T, Lin H, Cava R J, Fu L, Gedik N, and Jarillo-Herrero P 2018 Nat. Phys. 14 900 |
[12] | Qin M S, Zhu P F, Ye X G, Xu W Z, Song Z H, Liang J, Liu K, and Liao Z M 2021 Chin. Phys. Lett. 38 017301 |
[13] | Tsirkin S S, Puente P A, and Souza I 2018 Phys. Rev. B 97 035158 |
[14] | König E J, Dzero M, Levchenko A, and Pesin D A 2019 Phys. Rev. B 99 155404 |
[15] | Son J, Kim K H, Ahn Y H, Lee H W, and Lee J 2019 Phys. Rev. Lett. 123 036806 |
[16] | Papaj M and Fu L 2019 Phys. Rev. Lett. 123 216802 |
[17] | See the Supplemental Material for detailed information on the first-principles calculation method, Berry curvature under $C3$ symmetry and antisymmetric characteristic of transverse current using nonequilibrium Green's function method, which includes Refs.[36–41] |
[18] | Ashton M, Paul J, Sinnott S B, and Hennig R G 2017 Phys. Rev. Lett. 118 106101 |
[19] | Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, and Marzari N 2018 Nat. Nanotechnol. 13 246 |
[20] | Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Jørgen M J, Olsen T, and Thygesen K S 2018 2D Mater. 5 042002 |
[21] | Collins J L, Tadich A, Wu W, Gomes L C, Rodrigues J N B, Liu C, Hellerstedt J, Ryu H, Tang S, Mo S K, Adam S, Yang S A, Fuhrer M S, and Edmonds M T 2018 Nature 564 390 |
[22] | Hong Y L, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H M, and Ren W 2020 Science 369 670 |
[23] | Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li L J 2017 Nat. Nanotechnol. 12 744 |
[24] | Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, and Lou J 2017 ACS Nano 11 8192 |
[25] | Bahuguna B P, Saini L K, Tiwari B, and Sharma R O 2016 RSC Adv. 6 52920 |
[26] | Weng H, Ranjbar A, Liang Y, Song Z, Khazaei M, Yunoki S, Arai M, Kawazoe Y, Fang Z, and Dai X 2015 Phys. Rev. B 92 075436 |
[27] | Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J, and Claessen R 2017 Science 357 287 |
[28] | Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, and Ji S H 2016 Science 353 274 |
[29] | Qian X, Liu J, Fu L, and Li J 2014 Science 346 1344 |
[30] | Jia Z Y, Song Y H, Li X B, Ran K, Lu P, Zheng H J, Zhu X Y, Shi Z Q, Sun J, Wen J, Xing D, and Li S C 2017 Phys. Rev. B 96 041108(R) |
[31] | Tang S, Zhang C, Wong D, Pedramrazi Z, Tsai H Z, Jia C, Moritz B, Claassen M, Ryu H, Kahn S, Jiang J, Yan H, Hashimoto M, Lu D, Moore R G, Hwang C C, Hwang C, Hussain Z, Chen Y, Ugeda M M, Liu Z, Xie X, Devereaux T P, Crommie M F, Mo S K, and Shen Z X 2017 Nat. Phys. 13 683 |
[32] | Xiao D, Liu G B, Feng W, Xu X, and Yao W 2012 Phys. Rev. Lett. 108 196802 |
[33] | Nguyen-Truong H T 2016 Appl. Phys. Lett. 108 172901 |
[34] | Gall D 2016 J. Appl. Phys. 119 085101 |
[35] | Mandal D, Das K, and Agarwal A 2020 Phys. Rev. B 102 205414 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|