CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap |
Xiang-Chuan Yan1,3, Da-Li Sun1*, Lu Wang1,3, Jing Min1,3, Shi-Guo Peng1, and Kai-Jun Jiang1,2* |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 2Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China 3University of Chinese Academy of Sciences, Beijing 100049, China
|
|
Cite this article: |
Xiang-Chuan Yan, Da-Li Sun, Lu Wang et al 2021 Chin. Phys. Lett. 38 056701 |
|
|
Abstract We report the experimental production of degenerate Fermi gases of $^6$Li atoms in an optical dipole trap. The gray-molasses technique is carried out to decrease the atomic temperature to 57 µK, which facilitates the efficient loading of cold atoms into the optical dipole trap. The Fermi degeneracy is achieved by evaporative cooling of a two-spin mixture of $^6$Li atoms on the Feshbach resonance. The degenerate atom number per spin is $3.5\times10^4$, and the reduced temperature $T/T_{\rm F}$ is as low as 0.1, where $T_{\rm F}$ is the Fermi temperature of the non-interacting Fermi gas. We also observe the anisotropic expansion of the atom cloud in the strongly interacting regime.
|
|
Received: 06 February 2021
Published: 02 May 2021
|
|
|
|
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301503), the National Natural Science Foundation of China (Grant Nos. 11674358, 11434015, and 11974384), the Chinese Academy of Sciences (Grant No. YJKYYQ20170025), and K. C. Wong Education Foundation (Grant No. GJTD-2019-15). |
|
|
[1] | Chin C, Grimm R, Julienne P, and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 |
[2] | Bourdel T, Khaykovich L, Cubizolles J, Zhang J, and Chevy F 2004 Phys. Rev. Lett. 93 050401 |
[3] | Chin C, Bartenstein M, Altmeyer A, Riedl S, and Jochim S 2004 Science 305 1128 |
[4] | Pollack S E, Dries D, and Hulet R G 2009 Science 326 1683 |
[5] | Nascimbene S, Navon N, Jiang K J, Chevy F, and Salomon C 2010 Nature 463 1057 |
[6] | Peng S G, Zhang C X, Tan S, and Jiang K 2018 Phys. Rev. Lett. 120 060408 |
[7] | Giorgini S, Pitaevskii L P, and Stringari S 2008 Rev. Mod. Phys. 80 1215 |
[8] | Li J, Harter A K, Liu J, de Melo L, and Joglekar Y N 2019 Nat. Commun. 10 855 |
[9] | Gupta S, Hadzibabic Z, Zwierlein M, Stan C, and Dieckmann K 2003 Science 300 1723 |
[10] | Qi W, Liang M C, Zhang H, Wei Y D, and Wang W W 2019 Chin. Phys. Lett. 36 093701 |
[11] | Zwierlein M W, Schirotzek A, Schunck C H, and Ketterle W 2006 Science 311 492 |
[12] | Partridge G B, Li W, Kamar R I, Liao Y A, and Hulet R G 2006 Science 311 503 |
[13] | Iskin M and Subaşı A 2011 Phys. Rev. Lett. 107 050402 |
[14] | Mendoza R, Fortes M, Solı́s M, and Koinov Z 2013 Phys. Rev. A 88 033606 |
[15] | Revelle M C, Fry J A, Olsen B A, and Hulet R G 2016 Phys. Rev. Lett. 117 235301 |
[16] | Nascimbène S, Navon N, Jiang K J, Tarruell L, and Teichmann M 2009 Phys. Rev. Lett. 103 170402 |
[17] | Peng S G, Tan S, and Jiang K 2014 Phys. Rev. Lett. 112 250401 |
[18] | Chen Q, Wang J, Sun L, and Yu Y 2020 Chin. Phys. Lett. 37 053702 |
[19] | DeMarco B and Jin D S 1999 Science 285 1703 |
[20] | Zwierlein M W, Schunck C H, Schirotzek A, and Ketterle W 2006 Nature 442 54 |
[21] | Deng S, Shi Z Y, Diao P, Yu Q, and Zhai H 2016 Science 353 371 |
[22] | Strecker K E, Partridge G B, Truscott A G, and Hulet R G 2002 Nature 417 150 |
[23] | McAlexander W, Abraham E, and Hulet R 1996 Phys. Rev. A 54 R5 |
[24] | Fernandes D R, Sievers F, Kretzschmar N, Wu S, and Salomon C 2012 Europhys. Lett. 100 63001 |
[25] | Sievers F, Kretzschmar N, Fernandes D R, Suchet D, and Rabinovic M 2015 Phys. Rev. A 91 023426 |
[26] | Burchianti A, Valtolina G, Seman J A, Pace E, and De Pas M 2014 Phys. Rev. A 90 043408 |
[27] | Kinast J, Turlapov A, Thomas J E, Chen Q, and Stajic J 2005 Science 307 1296 |
[28] | Veeravalli G 2009 PhD Thesis (Swinburne University of Technology) |
[29] | Xiong D Z, Chen H X, Wang P J, Yu X D, and Gao F 2008 Chin. Phys. Lett. 25 843 |
[30] | Truscott A G, Strecker K E, McAlexander W I, Partridge G B, and Hulet R G 2001 Science 291 2570 |
[31] | Cao C, Elliott E, Joseph J, Wu H, and Petricka J 2011 Science 331 58 |
[32] | Deng S J, Diao P P, Yu Q L, and Wu H B 2015 Chin. Phys. Lett. 32 053401 |
[33] | O'hara K, Hemmer S, Gehm M, Granade S, and Thomas J 2002 Science 298 2179 |
[34] | Kinast J, Hemmer S, Gehm M, Turlapov A, and Thomas J 2004 Phys. Rev. Lett. 92 150402 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|