Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 054201    DOI: 10.1088/0256-307X/38/5/054201
Broadband Terahertz Wave Generation from Monolayer Graphene Driven by Few-Cycle Laser Pulse
Zhong Guan1, Guo-Li Wang1*, Lei Zhang2, Zhi-Hong Jiao1, Song-Feng Zhao1, and Xiao-Xin Zhou1,3*
1College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
2School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Zhong Guan, Guo-Li Wang, Lei Zhang et al  2021 Chin. Phys. Lett. 38 054201
Download: PDF(582KB)   PDF(mobile)(0KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We theoretically investigate the characteristics of terahertz (THz) radiation from monolayer graphene exposed to normal incident few-cycle laser pulses, by numerically solving the extended semiconductor Bloch equations. Our simulations show that the THz spectra in low frequency regions are highly dependent on the carrier envelope phase (CEP) of driving laser pulses. Using an optimal CEP of few-cycle laser pulses, we can obtain broadband strong THz waves, due to the symmetry breaking of the laser-graphene system. Our results also show that the strength of the THz spectra depend on both the intensity and central wavelength of the laser pulses. The intensity dependence of the THz wave can be described by the excitation rate of graphene, while wavelength dependence can be traced back to the band velocity and the population of graphene. We find that a near single-cycle THz pulse can be obtained from graphene driven by a mid-infrared laser pulse.
Received: 14 January 2021      Published: 02 May 2021
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11764038, 11864037, 11765018, and 91850209).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Zhong Guan
Guo-Li Wang
Lei Zhang
Zhi-Hong Jiao
Song-Feng Zhao
and Xiao-Xin Zhou
[1] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
[2] Dobroiu D, Otani C, and Kawase K 2006 Meas. Sci. Technol. 17 R161
[3] Hwang H Y, Fleischer S, Brandt N C, Perkins J B G, Liu M, Fan K, Sternbach A, Zhang X, Averitt R D, and Nelson K A 2015 J. Mod. Opt. 62 1447
[4] Huang Y, Meng C, Wang X, Lü Z, Zhang D, Chen W, Zhao J, Yuan J, and Zhao Z 2015 Phys. Rev. Lett. 115 123002
[5] Zhou T, Zhang R, Yao C, Fu Z L, Shao S X, and Cao J C 2017 Chin. Phys. Lett. 34 084206
[6] Han X W, Hou L, Yang L, Wang Z Q, Zhao M M, and Shi W 2016 Chin. Phys. Lett. 33 120701
[7] Wang S, Zhu Z, Zhang Y, Yan T M, and Jiang Y 2021 Chin. Phys. Lett. 38 013401
[8] Dey I, Jana K, Fedorov A D, Yu W V, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, and Kumar G R 2017 Nat. Commun. 8 1184
[9] Jin Q, Yiwen E, Williams K, Dai J, and Zhang X C 2017 Appl. Phys. Lett. 111 071103
[10] Balakin A V, Coutaz J L, Makarov V A, Kotelnikov I A, Peng Y, Solyankin P M, Zhu Y, and Shkurinov A P 2019 Photon. Res. 7 678
[11] Solyankin P M, Lakatosh B V, Krivokorytov M S, Tsygvintsev I P, Sinko A S, Kotelnikov I A, Makarov V A, Coutaz J L, Medvedev V V, and Shkurinov A P 2020 Phys. Rev. Appl. 14 034033
[12] Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
[13] Kim K Y, Glownia J H, Taylor A J, and Rodriguez G 2007 Opt. Express 15 4577
[14] Zhang L, Wang G L, and Zhou X X 2016 J. Mod. Opt. 63 2159
[15] de González A M P, Babushkin I, Bergé L, Skupin S, Cabrera-Granado E, Köhler C, Morgner U, Husakou A, and Herrmann J 2015 Phys. Rev. Lett. 114 183901
[16] Zhang X C, Shkurinov A, and Zhang Y 2017 Nat. Photon. 11 16
[17] Ropagnol X, Khorasaninejad M, Raeiszadeh M, Safavi-Naeini S, Bouvier M, Côté C Y, Laramée A, Reid M, Gauthier M A, and Ozaki T 2016 Opt. Express 24 11299
[18] Huang S W, Granados E, Huang W R, Hong K H, Zapata L E, and Kärtner F X 2013 Opt. Lett. 38 796
[19] Fülöp J A, Palfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, and Hebling J 2012 Opt. Lett. 37 557
[20] Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X, and Ozaki T 2016 J. Opt. 18 093004
[21] Higuchi T, Heide C, Ullmann K, Weber H B, and Hommelhoff P 2017 Nature 550 224
[22] Bahk Y M, Ramakrishnan G, Choi J, Song H, Choi G, Kim Y H, Ahn K J, Kim D S, and Planken P C M 2014 ACS Nano 8 9089
[23] Maysonnave J, Huppert S, Wang F, Maero S, Berger C, de Heer W, Norris T B, De Vaulchier L A, Dhillon S, Tignon J, Ferreira R, and Mangeney J 2014 Nano Lett. 14 5797
[24] Vampa G, Hammond T J, Thiré N, Schmidt B E, Légaré F, McDonald C R, Brabec T, and Corkum P B 2015 Nature 522 462
[25] Guan Z, Liu L, Wang G L, Zhao S F, Jiao Z H, and Zhou X X 2020 Chin. Phys. B 29 104206
[26] Wang W M, Kawata S, Sheng Z M, Li Y T, and Zhang J 2011 Phys. Plasmas 18 073108
[27] Gauthey F I, Garraway B M, and Knight P L 1997 Phys. Rev. A 56 3093
[28] Wang W M, Kawata S, Sheng Z M, Li Y T, Zhang J, Chen L M, Qian L J, and Zhang J 2011 Opt. Lett. 36 2608
[29] Wetzels A, Gürtler A, Muller H G, and Noordam L D 2001 Eur. Phys. J. D 14 157
[30] LaRue J L, Katayama T, Lindenberg A, Fisher A S, Öström H, Nilsson A, and Ogasawara H 2015 Phys. Rev. Lett. 115 036103
[31] Cheng Q Y, Liu J S, Zhou X C, Song Y Z, and Meng Q T 2019 Europhys. Lett. 125 33001
[32] Gao Y, Drake T, Chen Z, and DeCamp M F 2008 Opt. Lett. 33 2776
[33] Zhang L, Wang G L, Zhao S F, and Zhou X X 2017 Phys. Plasmas 24 023116
[34] Tailliez C, Stathopulos A, Skupin S, Buožius D, Babushkin I, Vaičaitis V, and Bergé L 2020 New J. Phys. 22 103038
Full text