NUCLEAR PHYSICS |
|
|
|
|
From Finite Nuclei to Neutron Stars: The Essential Role of High-Order Density Dependence in Effective Forces |
Chong-Ji Jiang , Yu Qiang , Da-Wei Guan , Qing-Zhen Chai , Chun-Yuan Qiao , and Jun-Chen Pei* |
State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China |
|
Cite this article: |
Chong-Ji Jiang , Yu Qiang , Da-Wei Guan et al 2021 Chin. Phys. Lett. 38 052101 |
|
|
Abstract A unified description of finite nuclei and equation of state of neutron stars presents both a major challenge and also opportunities for understanding nuclear interactions. Inspired by the Lee–Huang–Yang formula of hard-sphere gases, we develop effective nuclear interactions with an additional high-order density dependent term. While the original Skyrme force SLy4 is widely used in studies of neutron stars, there are not satisfactory global descriptions of finite nuclei. The refitted SLy4${'}$ force can improve descriptions of finite nuclei but slightly reduces the radius of neutron star of 1.4$M_{\odot}$ with $M_{\odot}$ being the solar mass. We find that the extended SLy4 force with a higher-order density dependence can properly describe properties of both finite nuclei and GW170817 binary neutron stars, including the mass-radius relation and the tidal deformability. This demonstrates the essential role of high-order density dependence at ultrahigh densities. Our work provides a unified and predictive model for neutron stars, as well as new insights for the future development of effective interactions.
|
|
Received: 28 December 2020
Published: 02 May 2021
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant No. 2018YFA0404403), the National Natural Science Foundation of China (Grant Nos. 11975032, 11835001, 11790325, and 11961141003). |
|
|
[1] | Baade W and Zwicky F 1934 Proc. Natl. Acad. Sci. USA 20 259 |
[2] | James M L and Madappa P 2016 Phys. Rep. 621 127 |
[3] | Oertel M, Hempel M, Klähn T, and Typel S 2017 Rev. Mod. Phys. 89 015007 |
[4] | Rikovska S J, Miller J C, Koncewicz R, Stevenson P D, and Strayer M R 2003 Phys. Rev. C 68 034324 |
[5] | Abbott B P et al. 2017 Phys. Rev. Lett. 119 161101 |
[6] | Abbott B P et al. 2018 Phys. Rev. Lett. 121 161101 |
[7] | Fasano M, Abdelsalhin T, Maselli A, and Ferrari V 2019 Phys. Rev. Lett. 123 141101 |
[8] | Abbott B P et al. 2019 Phys. Rev. X 9 011001 |
[9] | Hinderer T 2008 Astrophys. J. 677 1216 |
[10] | Burgio G F and Vidaña I 2018 Universe 6 119 |
[11] | Douchin F and Haensel P 2001 Astron. & Astrophys. 380 151 |
[12] | James M L and Madappa P 2001 Astrophys. J. 550 426 |
[13] | Stone J R, Stevenson P D, Miller J C, and Strayer M R 2002 Phys. Rev. C 65 064312 |
[14] | Ishii N, Aoki S, and Hatsuda T 2007 Phys. Rev. Lett. 99 022001 |
[15] | Tews I, Davoudi Z, Ekstrom A, Holt J D, and Lynn J E 2020 J. Phys. G 47 103001 |
[16] | Dutra M, Lourenço O, Sá Martins J S, Delfino A, Stone J R, and Stevenson P D 2012 Phys. Rev. C 85 035201 |
[17] | Li A, Zhu Z Y, Zhou E P, Dong J M, Hu J N, and Xia C J 2020 J. High Energy Astrophys. 28 19 |
[18] | Tamii A et al. 2011 Phys. Rev. Lett. 107 062502 |
[19] | Abrahamyan S et al. (PREX Collaboration) 2012 Phys. Rev. Lett. 108 112502 |
[20] | Tsang M B, Zhang Y X, Danielewicz P, Famiano M, Li Z X, Lynch W G, and Steiner A W 2009 Phys. Rev. Lett. 102 122701 |
| Danielewicz P, Lacey R, and Lynch W G 2002 Science 298 1592 |
| Li B A, Chen L W, and Che M K 2008 Phys. Rep. 464 113 |
| Xiao Z G, Li B A, Chen L W, Yong G C, and Zhang M 2009 Phys. Rev. Lett. 102 062502 |
[21] | Skyrme T H R 1956 Philos. Mag. 1 1043 |
[22] | Vautherin D and Brink D M 1972 Phys. Rev. C 5 626 |
[23] | Chabanat E, Bonche P, Haensel P, Meyer J, and Schaeffer R 1997 Nucl. Phys. A 627 710 |
[24] | Chabanat E, Bonche P, Haensel P, Meyer J, and Schaeffer R 1998 Nucl. Phys. A 635 231 |
[25] | Antoniadis J, Freire P C C, Wex N et al. 2013 Science 340 1233232 |
[26] | Erler J, Horowitz C J, Nazarewicz W, Rafalski M, and Reinhard P G 2013 Phys. Rev. C 87 044320 |
[27] | Xiong X Y, Pei J C, and Chen W J 2016 Phys. Rev. C 93 024311 |
[28] | Negele J W 1982 Rev. Mod. Phys. 54 913 |
[29] | Grange P, Lejeune A, Martzolff M, and Mathiot J F 1989 Phys. Rev. C 40 1040 |
[30] | Huang K and Yang C N 1957 Phys. Rev. 105 767 |
[31] | Lee T D and Yang C N 1957 Phys. Rev. 105 1119 |
[32] | DeDominicis C and Martin P C 1957 Phys. Rev. 105 1419 |
[33] | Altmeyer A, Riedl S, Kohstall C, Wright M J, Geursen R, Bartenstein M, Chin C, Denschlag J H, and Grimm R 2017 Phys. Rev. Lett. 98 040401 |
[34] | Agrawal B K, Dhiman S K, and Kumar R 2006 Phys. Rev. C 73 034319 |
[35] | Tolman R C 1939 Phys. Rev. 55 364 |
[36] | Oppenheimer J R and Volkoff G M 1939 Phys. Rev. 55 374 |
[37] | Hu J N, Bao S S, Zhang Y, Nakazato K I, Sumiyoshi K, and Shen H 2020 Prog. Theor. Exp. Phys. 2020 043D01 |
[38] | Hinderer T, Lackey B D, Lang R N, and Read J S 2010 Phys. Rev. D 81 123016 |
[39] | Wang M, Audi G, Kondev G G, Huang W J, Naimi S, and Xu X 2017 Chin. Phys. C 41 030003 |
[40] | Angeli I and Marinova K P 2013 At. Data Nucl. Data Tables 99 69 |
[41] | Wang K, Kortelainen M, and Pei J C 2017 Phys. Rev. C 96 031301 |
[42] | Zuo Z W, Pei J C, Xiong X Y, and Zhu Y 2018 Chin. Phys. C 42 064106 |
[43] | Chai Q Z, Pei J C, Fei N, and Guan D W 2020 Phys. Rev. C 102 014312 |
[44] | Malik T, Agrawal B K, De J N, Samaddar S K, Providência C, Mondal C, and Jha T K 2019 Phys. Rev. C 99 052801 |
[45] | Tsang C Y, Tsang M B, Danielewicz P, Fattoyev F J, Lynch W G 2019 Phys. Lett. B 796 1 |
[46] | Zhang Y X, Liu M, Xia C J, Li Z X, and Biswal S K 2020 Phys. Rev. C 101 034303 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|