Chin. Phys. Lett.  2021, Vol. 38 Issue (5): 052101    DOI: 10.1088/0256-307X/38/5/052101
NUCLEAR PHYSICS |
From Finite Nuclei to Neutron Stars: The Essential Role of High-Order Density Dependence in Effective Forces
Chong-Ji Jiang , Yu Qiang , Da-Wei Guan , Qing-Zhen Chai , Chun-Yuan Qiao , and Jun-Chen Pei*
State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
Cite this article:   
Chong-Ji Jiang , Yu Qiang , Da-Wei Guan  et al  2021 Chin. Phys. Lett. 38 052101
Download: PDF(478KB)   PDF(mobile)(0KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A unified description of finite nuclei and equation of state of neutron stars presents both a major challenge and also opportunities for understanding nuclear interactions. Inspired by the Lee–Huang–Yang formula of hard-sphere gases, we develop effective nuclear interactions with an additional high-order density dependent term. While the original Skyrme force SLy4 is widely used in studies of neutron stars, there are not satisfactory global descriptions of finite nuclei. The refitted SLy4${'}$ force can improve descriptions of finite nuclei but slightly reduces the radius of neutron star of 1.4$M_{\odot}$ with $M_{\odot}$ being the solar mass. We find that the extended SLy4 force with a higher-order density dependence can properly describe properties of both finite nuclei and GW170817 binary neutron stars, including the mass-radius relation and the tidal deformability. This demonstrates the essential role of high-order density dependence at ultrahigh densities. Our work provides a unified and predictive model for neutron stars, as well as new insights for the future development of effective interactions.
Received: 28 December 2020      Published: 02 May 2021
Fund: Supported by the National Key R&D Program of China (Grant No. 2018YFA0404403), the National Natural Science Foundation of China (Grant Nos. 11975032, 11835001, 11790325, and 11961141003).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/5/052101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I5/052101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chong-Ji Jiang 
Yu Qiang 
Da-Wei Guan 
Qing-Zhen Chai 
Chun-Yuan Qiao 
and Jun-Chen Pei
[1] Baade W and Zwicky F 1934 Proc. Natl. Acad. Sci. USA 20 259
[2] James M L and Madappa P 2016 Phys. Rep. 621 127
[3] Oertel M, Hempel M, Klähn T, and Typel S 2017 Rev. Mod. Phys. 89 015007
[4] Rikovska S J, Miller J C, Koncewicz R, Stevenson P D, and Strayer M R 2003 Phys. Rev. C 68 034324
[5] Abbott B P et al. 2017 Phys. Rev. Lett. 119 161101
[6] Abbott B P et al. 2018 Phys. Rev. Lett. 121 161101
[7] Fasano M, Abdelsalhin T, Maselli A, and Ferrari V 2019 Phys. Rev. Lett. 123 141101
[8] Abbott B P et al. 2019 Phys. Rev. X 9 011001
[9] Hinderer T 2008 Astrophys. J. 677 1216
[10] Burgio G F and Vidaña I 2018 Universe 6 119
[11] Douchin F and Haensel P 2001 Astron. & Astrophys. 380 151
[12] James M L and Madappa P 2001 Astrophys. J. 550 426
[13] Stone J R, Stevenson P D, Miller J C, and Strayer M R 2002 Phys. Rev. C 65 064312
[14] Ishii N, Aoki S, and Hatsuda T 2007 Phys. Rev. Lett. 99 022001
[15] Tews I, Davoudi Z, Ekstrom A, Holt J D, and Lynn J E 2020 J. Phys. G 47 103001
[16] Dutra M, Lourenço O, Sá Martins J S, Delfino A, Stone J R, and Stevenson P D 2012 Phys. Rev. C 85 035201
[17] Li A, Zhu Z Y, Zhou E P, Dong J M, Hu J N, and Xia C J 2020 J. High Energy Astrophys. 28 19
[18] Tamii A et al. 2011 Phys. Rev. Lett. 107 062502
[19] Abrahamyan S et al. (PREX Collaboration) 2012 Phys. Rev. Lett. 108 112502
[20] Tsang M B, Zhang Y X, Danielewicz P, Famiano M, Li Z X, Lynch W G, and Steiner A W 2009 Phys. Rev. Lett. 102 122701
Danielewicz P, Lacey R, and Lynch W G 2002 Science 298 1592
Li B A, Chen L W, and Che M K 2008 Phys. Rep. 464 113
Xiao Z G, Li B A, Chen L W, Yong G C, and Zhang M 2009 Phys. Rev. Lett. 102 062502
[21] Skyrme T H R 1956 Philos. Mag. 1 1043
[22] Vautherin D and Brink D M 1972 Phys. Rev. C 5 626
[23] Chabanat E, Bonche P, Haensel P, Meyer J, and Schaeffer R 1997 Nucl. Phys. A 627 710
[24] Chabanat E, Bonche P, Haensel P, Meyer J, and Schaeffer R 1998 Nucl. Phys. A 635 231
[25] Antoniadis J, Freire P C C, Wex N et al. 2013 Science 340 1233232
[26] Erler J, Horowitz C J, Nazarewicz W, Rafalski M, and Reinhard P G 2013 Phys. Rev. C 87 044320
[27] Xiong X Y, Pei J C, and Chen W J 2016 Phys. Rev. C 93 024311
[28] Negele J W 1982 Rev. Mod. Phys. 54 913
[29] Grange P, Lejeune A, Martzolff M, and Mathiot J F 1989 Phys. Rev. C 40 1040
[30] Huang K and Yang C N 1957 Phys. Rev. 105 767
[31] Lee T D and Yang C N 1957 Phys. Rev. 105 1119
[32] DeDominicis C and Martin P C 1957 Phys. Rev. 105 1419
[33] Altmeyer A, Riedl S, Kohstall C, Wright M J, Geursen R, Bartenstein M, Chin C, Denschlag J H, and Grimm R 2017 Phys. Rev. Lett. 98 040401
[34] Agrawal B K, Dhiman S K, and Kumar R 2006 Phys. Rev. C 73 034319
[35] Tolman R C 1939 Phys. Rev. 55 364
[36] Oppenheimer J R and Volkoff G M 1939 Phys. Rev. 55 374
[37] Hu J N, Bao S S, Zhang Y, Nakazato K I, Sumiyoshi K, and Shen H 2020 Prog. Theor. Exp. Phys. 2020 043D01
[38] Hinderer T, Lackey B D, Lang R N, and Read J S 2010 Phys. Rev. D 81 123016
[39] Wang M, Audi G, Kondev G G, Huang W J, Naimi S, and Xu X 2017 Chin. Phys. C 41 030003
[40] Angeli I and Marinova K P 2013 At. Data Nucl. Data Tables 99 69
[41] Wang K, Kortelainen M, and Pei J C 2017 Phys. Rev. C 96 031301
[42] Zuo Z W, Pei J C, Xiong X Y, and Zhu Y 2018 Chin. Phys. C 42 064106
[43] Chai Q Z, Pei J C, Fei N, and Guan D W 2020 Phys. Rev. C 102 014312
[44] Malik T, Agrawal B K, De J N, Samaddar S K, Providência C, Mondal C, and Jha T K 2019 Phys. Rev. C 99 052801
[45] Tsang C Y, Tsang M B, Danielewicz P, Fattoyev F J, Lynch W G 2019 Phys. Lett. B 796 1
[46] Zhang Y X, Liu M, Xia C J, Li Z X, and Biswal S K 2020 Phys. Rev. C 101 034303
Viewed
Full text


Abstract