Chin. Phys. Lett.  2021, Vol. 38 Issue (3): 030302    DOI: 10.1088/0256-307X/38/3/030302
GENERAL |
Effects of Quantum Noise on Quantum Approximate Optimization Algorithm
Cheng Xue1, Zhao-Yun Chen1,2, Yu-Chun Wu1, and Guo-Ping Guo1*
1Key Laboratory of Quantum Information, Chinese Academy of Sciences, School of Physics, University of Science and Technology of China, Hefei 230026, China
2Origin Quantum Computing Hefei, Hefei 230026, China
Cite this article:   
Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu et al  2021 Chin. Phys. Lett. 38 030302
Download: PDF(780KB)   PDF(mobile)(832KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The quantum-classical hybrid algorithm is a promising algorithm with respect to demonstrating the quantum advantage in noisy-intermediate-scale quantum (NISQ) devices. When running such algorithms, effects due to quantum noise are inevitable. In our work, we consider a well-known hybrid algorithm, the quantum approximate optimization algorithm (QAOA). We study the effects on QAOA from typical quantum noise channels, and produce several numerical results. Our research indicates that the output state fidelity, i.e., the cost function obtained from QAOA, decreases exponentially with respect to the number of gates and noise strength. Moreover, we find that when noise is not serious, the optimized parameters will not deviate from their ideal values. Our result provides evidence for the effectiveness of hybrid algorithms running on NISQ devices.
Received: 24 November 2020      Published: 02 March 2021
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301700), the National Natural Science Foundation of China (Grants No. 11625419), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030600), and the Anhui Initiative in Quantum Information Technologies (Grant No. AHY080000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/3/030302       OR      https://cpl.iphy.ac.cn/Y2021/V38/I3/030302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cheng Xue
Zhao-Yun Chen
Yu-Chun Wu
and Guo-Ping Guo
[1] Preskill J 2018 Quantum 2 79
[2] Preskill J 2012 arXiv:1203.5813[quant-ph]
[3] Gidney C and Ekerå M 2019 arXiv:1905.09749[quant-ph]
[4] Mitarai K, Negoro M, Kitagawa M and Fujii K 2018 Phys. Rev. A 98 032309
[5] Havlíček V, Córcoles A D, Temme K, Harrow A W, Kandala A, Chow J M and Gambetta J M 2019 Nature 567 209
[6] Lloyd S and Weedbrook C 2018 Phys. Rev. Lett. 121 040502
[7] Dallaire-Demers P L and Killoran N 2018 Phys. Rev. A 98 012324
[8] Romero J, Olson J P and Aspuru-Guzik A 2017 Quantum Sci. Technol. 2 045001
[9] Amin M H, Andriyash E, Rolfe J, Kulchytskyy B and Melko R 2018 Phys. Rev. X 8 021050
[10] Farhi E and Neven H 2018 arXiv:1802.06002[quant-ph]
[11] Schuld M and Killoran N 2019 Phys. Rev. Lett. 122 040504
[12]Schuld M, Bocharov A, Svore K M and Wiebe N 2020 Phys. Rev. A 101 032308
[13] Schuld M, Fingerhuth M and Petruccione F 2017 Europhys. Lett. 119 60002
[14] Hamilton K E, Dumitrescu E F and Pooser R C 2019 Phys. Rev. A 99 062323
[15] Zhu D, Linke N M, Benedetti M, Landsman K A, Nguyen N H, Alderete C H, Perdomo-Ortiz A, Korda N, Garfoot A and Brecque C et al. 2019 Sci. Adv. 5 eaaw9918
[16] Grant E, Benedetti M, Cao S, Hallam A, Lockhart J, Stojevic V, Green A G and Severini S 2018 npj Quantum Inf. 4 65
[17] Tacchino F, Macchiavello C, Gerace D and Bajoni D 2019 npj Quantum Inf. 5 26
[18] Rocchetto A, Aaronson S, Severini S, Carvacho G, Poderini D, Agresti I, Bentivegna M and Sciarrino F 2019 Sci. Adv. 5 eaau1946
[19] Ding Y, Lamata L, Sanz M, Chen X and Solano E 2019 Adv. Quantum Technol. 2 1800065
[20] Benedetti M, Garcia-Pintos D, Perdomo O, Leyton-Ortega V, Nam Y and Perdomo-Ortiz A 2019 npj Quantum Inf. 5 45
[21] Sharma K, Khatri S, Cerezo M and Coles P J 2020 New J. Phys. 22 043006
[22] Khatri S, LaRose R, Poremba A, Cincio L, Sornborger A T and Coles P J 2019 Quantum 3 140
[23] Jones T and Benjamin S C 2018 arXiv:1811.03147 [quant-ph]
[24] Heya K, Suzuki Y, Nakamura Y and Fujii K 2018 arXiv:1810.12745 [quant-ph]
[25] Farhi E, Goldstone J and Gutmann S 2014 arXiv:1411.4028 [quant-ph]
[26] Otterbach J S, Manenti R, Alidoust N, Bestwick A, Block M, Bloom B, Caldwell S, Didier N, Fried E S, Hong S, Karalekas P, Osborn C B, Papageorge A, Peterson E C, Prawiroatmodjo G, Rubin N, Ryan C A, Scarabelli D, Scheer M, Sete E A, Sivarajah P, Smith R S, Staley A, Tezak N, Zeng W J, Hudson A, Johnson B R, Reagor M, da Silva M P and Rigetti C 2017 arXiv:1712.05771[quant-ph]
[27] Guerreschi G G and Matsuura A Y 2019 Sci. Rep. 9 9
[28] Crooks G E 2018 arXiv:1811.08419 [quant-ph]
[29] Zhou L, Wang S T, Choi S, Pichler H and Lukin M D 2020 Phys. Rev. X 10 021067
[30] Marshall J, Wudarski F, Hadfield S and Hogg T 2020 IOP SciNotes 1 025208
Viewed
Full text


Abstract