CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Towards Fabrication of Atomic Dopant Wires via Monolayer Doping Patterned by Resist-Free Lithography |
Chufan Zhang1†, Ke Li1†, Xiaoxian Zang2, Fuyuan Ma2, and Yaping Dan1* |
1University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China 2Key Laboratory of Solar Energy Utilization & Energy Saving Technology of Zhejiang Province, Zhejiang Energy R&D Institute Co., Ltd., Hangzhou 311121, China
|
|
Cite this article: |
Chufan Zhang, Ke Li, Xiaoxian Zang et al 2021 Chin. Phys. Lett. 38 028101 |
|
|
Abstract Fabrication of atomic dopant wires at large scale is challenging. We explored the feasibility to fabricate atomic dopant wires by nano-patterning self-assembled dopant carrying molecular monolayers via a resist-free lithographic approach. The resist-free lithography is to use electron beam exposure to decompose hydrocarbon contaminants in vacuum chamber into amorphous carbon that serves as an etching mask for nanopatterning the phosphorus-bearing monolayers. Dopant wires were fabricated in silicon by patterning diethyl vinylphosphonate monolayers into lines with a width ranging from 1 µm down to 8 nm. The dopants were subsequently driven into silicon to form dopant wires by rapid thermal annealing. Electrical measurements show a linear correlation between wire width and conductance, indicating the success of the monolayer patterning process at nanoscale. The dopant wires can be potentially scaled down to atomic scale if the dopant thermal diffusion can be mitigated.
|
|
Received: 02 September 2020
Published: 27 January 2021
|
|
|
|
Fund: Supported by the Innovation Program of Shanghai Municipal Education Commission (Grant No. 2019-01-07-00-02-E00075), the Key R&D Program of Zhejiang Province (Grant No. 2019C01155), and the National Natural Science Foundation of China (Grant No. 61874072). |
|
|
[1] | Shinada T, Okamoto S, Kobayashi T and Ohdomari I 2005 Nature 437 1128 |
[2] | Shinada T, Ishikawa A, Hinoshita C, Koh M and Ohdomari I 2000 Appl. Surf. Sci. 162 499 |
[3] | Dzurak A, Hollenberg L, Jamieson D, Stanley F, Yang C, Buhler T, Chan V, Reilly D, Wellard C and Hamilton A 2003 arXiv:cond-mat/0306265 |
[4] | Jamieson D N, Yang C, Hopf T, Hearne S M, Pakes C I, Prawer S, Mitic M, Gauja E, Andresen S E, Hudson F E, Dzurak A S and Clark R G 2005 Appl. Phys. Lett. 86 202101 |
[5] | Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G and Simmons M Y 2012 Nat. Nanotechnol. 7 242 |
[6] | Pok F J R W, Reusch T, Butcher M J, Goh K, Oberbeck L, Scappucci G, Hamilton A R and Simmons M Y 2007 Small 3 563 |
[7] | Ruess F J, Oberbeck L, Simmons M Y, Goh K E J, Hamilton A R, Hallam T, Schofield S R, Curson N J and Clark R G 2004 Nano Lett. 4 1969 |
[8] | Tettamanzi G C, Hile S J, House M G, Fuechsle M, Rogge S and Simmons M Y 2017 ACS Nano 11 2444 |
[9] | Ho J C, Yerushalmi R, Jacobson Z A, Fan Z, Alley R L and Javey A 2008 Nat. Mater. 7 62 |
[10] | Ho J C, Yerushalmi R, Smith G, Majhi P, Bennett J, Halim J, Faifer V N and Javey A 2009 Nano Lett. 9 725 |
[11] | Gao X, Kolevatov I, Chen K, Guan B, Mesli A, Monakhov E and Dan Y 2020 ACS Appl. Electron. Mater. 2 268 |
[12] | Gao X, Guan B, Mesli A, Chen K and Dan Y 2018 Nat. Commun. 9 118 |
[13] | van Druenen M, Collins G, Glynn C, O'Dwyer C and Holmes J D 2018 ACS Appl. Mater. & Interfaces 10 2191 |
[14] | Thissen P, Cho K and Longo R C 2017 ACS Appl. Mater. & Interfaces 9 1922 |
[15] | Zhi K, Zhang C, Wei H, Wen H and Dan Y 2020 Chem. Phys. 531 110658 |
[16] | Ye L, Pujari S P, Zuilhof H, Kudernac T, de Jong M P, van der Wiel W G and Huskens J 2015 ACS Appl. Mater. & Interfaces 7 3231 |
[17] | Guan B, Siampour H, Fan Z, Wang S, Kong X Y, Mesli A, Zhang J and Dan Y 2015 Sci. Rep. 5 12641 |
[18] | Ye L, González-Campo A, Núñez R, de Jong M P, Kudernac T, van der Wiel W G and Huskens J 2015 ACS Appl. Mater. & Interfaces 7 27357 |
[19] | Fu J, Chen K, Chang S, Zhi K, Gao X, Wei H and Dan Y 2019 AIP Adv. 9 125219 |
[20] | Longo R C, Mattson E C, Vega A, Cabrera W, Cho K, Chabal Y J and Thissen P 2016 Chem. Mater. 28 1975 |
[21] | O'Connell J, Verni G A, Gangnaik A, Shayesteh M, Long B, Georgiev Y M, Petkov N, McGlacken G P, Morris M A, Duffy R and Holmes J D 2015 ACS Appl. Mater. & Interfaces 7 15514 |
[22] | Kennedy N, Garvey S, Maccioni B, Eaton L, Nolan M, Duffy R, Meaney F, Kennedy M, Holmes J D and Long B 2020 Langmuir 36 9993 |
[23] | Alphazan T, Álvarez A D, Martin F, Grampeix H, Enyedi V, Martinez E, Rochat N, Veillerot M, Dewitte M, Nys J P, Berthe M, Stiévenard D, Thieuleux C and Grandidier B 2017 ACS Appl. Mater. & Interfaces 9 20179 |
[24] | Mattson E C and Chabal Y J 2018 J. Phys. Chem. C 122 8414 |
[25] | Ho J C, Ford A C, Chueh Y L, Leu P W, Ergen O, Takei K, Smith G, Majhi P, Bennett J and Javey A 2009 Appl. Phys. Lett. 95 072108 |
[26] | Zhang C, Peng M, Hu W and Dan Y 2020 ACS Appl. Electron. Mater. 2 275 |
[27] | Pelleg J and Ditchek B M 1993 J. Appl. Phys. 73 699 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|