Chin. Phys. Lett.  2021, Vol. 38 Issue (2): 023201    DOI: 10.1088/0256-307X/38/2/023201
ATOMIC AND MOLECULAR PHYSICS |
Multiple Auger Decay Following Xe$^{+}$ (4$p_{3/2}^{-1}$) Ionization
Zhenqi Liu1, Qing Liu1, Yulong Ma2, Fuyang Zhou3, and Yizhi Qu1*
1School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
2College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
3Data Center for High Energy Density Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Cite this article:   
Zhenqi Liu, Qing Liu, Yulong Ma et al  2021 Chin. Phys. Lett. 38 023201
Download: PDF(1254KB)   PDF(mobile)(1216KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Auger decay for the many-electron Xe$^{+}$ (4$p_{3/2}^{-1}$) state is studied in detail, using multistep approaches. It is found that the single Auger decay channels are primarily Coster–Kronig processes, which is in accord with other theoretical and experimental results. The double and triple Auger decays result primarily from cascade processes, i.e., the sequential two-step and three-step Auger decay, and as such, the contributions from direct processes can be neglected. Level-to-level rates for single, double, and triple decays are obtained, based on which comprehensive Auger electron spectra and ion yields are obtained. Our decay paths and Auger electron spectra are in agreement with the experimental analysis [Hikosaka et al., Phys. Rev. A 76 (2007) 032708], and our ion yield ratios (Xe$^{2+}$: Xe$^{3+}$: Xe$^{4+} = 4.6\!:\!87.0\!:\!8.4$) are also in line with their values ($5.0\!:\!86.0\!:\!9.0$). However, with respect to the ion yield ratios, a discrepancy still remains among the experimental and theoretical results. Taking into account the complexity of Xe's electronic structure, further, more detailed experiments are still required.
Received: 04 October 2020      Published: 27 January 2021
PACS:  32.80.Hd (Auger effect)  
  32.80.Zb (Autoionization)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
Fund: Supported by the National Key Research and Development Program of China (Grant No. 2017YFA0402300), and the National Natural Science Foundation of China (Grant Nos. 11774344 and 11474033).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/2/023201       OR      https://cpl.iphy.ac.cn/Y2021/V38/I2/023201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhenqi Liu
Qing Liu
Yulong Ma
Fuyang Zhou
and Yizhi Qu
[1] Becker U, Szostak D, Kerkhoff H G, Kupsch M, Langer B, Wehlitz R, Yagishita A and Hayaishi T 1989 Phys. Rev. A 39 3902
[2] Penent F, Palaudoux J, Lablanquie P, Andric L, Feifel R and Eland J H D 2005 Phys. Rev. Lett. 95 083002
[3] Gottwald A, Gerth C and Richter M 1999 Phys. Rev. Lett. 82 2068
[4] Carlson T A and Krause M O 1965 Phys. Rev. Lett. 14 390
[5] Muller A, Borovik A, J, Buhr T, Hellhund J, Holste K, Kilcoyne A L, Klumpp S, Martins M, Ricz S, Viefhaus J and Schippers S 2015 Phys. Rev. Lett. 114 013002
[6] Eland J H D, Slater C, Zagorodskikh S, Singh R, Andersson J, Hult-Roos A, Lauer A, Squibb R J and Feifel R 2015 J. Phys. B 48 205001
[7] Hikosaka Y, Lablanquie P, Penent F, Kaneyasu T, Shigemasa E, Eland J H, Aoto T and Ito K 2007 Phys. Rev. Lett. 98 183002
[8] Amusia M Y, Lee I S and Kilin V A 1992 Phys. Rev. A 45 4576
[9] Liu L, Li Y, Gao C and Zeng J 2020 Phys. Rev. A 101 012507
[10] Stock S, Beerwerth R and Fritzsche S 2017 Phys. Rev. A 95 053407
[11] Viefhaus J, Cvejanovic S, Langer B, Lischke T, Prumper G, Rolles D, Golovin A V, Grum-Grzhimailo A N, Kabachnik N M and Becker U 2004 Phys. Rev. Lett. 92 083001
[12] Zhou F, Ma Y and Qu Y 2016 Phys. Rev. A 93 060501
[13] Ma Y, Liu Z, Zhou F and Qu Y 2018 Phys. Rev. A 98 043417
[14] Ma Y, Zhou F, Liu L and Qu Y 2017 Phys. Rev. A 96 042504
[15] Zeng J, Liu P, Xiang W and Yuan J 2013 Phys. Rev. A 87 033419
[16] Wendin G and Ohno M 1976 Phys. Scr. 14 148
[17] Kivima¨K A, Aksela H, Jauhiainen J, Kivilompolo M, Nõmmiste E and Aksela S 1998 J. Electron Spectrosc. Relat. Phenom. 93 89
[18] Heinäsmäki S, Aksela H, Nikkinen J, Kukk E, Kivimäki A, Aksela S and Fritzsche S 2004 J. Electron Spectrosc. Relat. Phenom. 137 281
[19] Hikosaka Y, Lablanquie P, Penent F, Kaneyasu T, Shigemasa E, Eland J H D, Aoto T and Ito K 2007 Phys. Rev. A 76 032708
[20] Ohno M 1995 J. Electron Spectrosc. Relat. Phenom. 71 25
[21] Ohno M 2003 J. Electron Spectrosc. Relat. Phenom. 130 19
[22] Hayaishi T, Matsui T, Yoshii H, Higurash1 A, Murakami E, Yagishita A, Aoto T, Onuma T and Morioka Y 2002 J. Phys. B 35 141
[23] Partanen L, Huttula M, Heinäsmäki S, Aksela H and Aksela S 2007 J. Phys. B 40 4605
[24] Kochur A G, Dudenko A I, Sukhorukov V L and Petrov I D 1994 J. Phys. B 27 1709
[25] Bambynek W, Crasemann B, Fink R W, Freund H U, Mark H and Swift C D 1972 Rev. Mod. Phys. 44 716
[26] Müller A, Borovik A, Buhr T, Hellhund J, Holste K, Kilcoyne A L D, Klumpp S, Martins M, Ricz S, Viefhaus J and Schippers S 2018 Phys. Rev. A 97 013409
[27] Gu M F 2008 Can. J. Phys. 86 675
[28] Ding X B, Dong C Z and Fritzsche S 2008 Chin. Phys. B 17 2033
[29] Fritzsche S 2012 Comput. Phys. Commun. 183 1525
[30] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184
[31] Jönsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597
[32] Wang X L, Dong C Z, Su M G and Koike F 2012 Chin. Phys. Lett. 29 043201
[33] Ding X B, Dong C Z and O'Sullivan G 2012 Chin. Phys. Lett. 29 063201
[34] Fritzsche S, Fricke B and Sepp W 1992 Phys. Rev. A 45 1465
[35] Fritzsche S, Nikkinen J, Huttula S M, Aksela H, Huttula M and Aksela S 2007 Phys. Rev. A 75 012501
[36] Ma Y, Zhou F, Liu Z and Qu Y 2018 Chin. Phys. B 27 063201
Viewed
Full text


Abstract