Chin. Phys. Lett.  2021, Vol. 38 Issue (12): 128701    DOI: 10.1088/0256-307X/38/12/128701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Edge Transport and Self-Assembly of Passive Objects in a Chiral Active Fluid
Qing Yang1,2, Huan Liang1,2, Rui Liu1, Ke Chen1,2,3, Fangfu Ye1,2,3,4*, and Mingcheng Yang1,2,3*
1Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
Cite this article:   
Qing Yang, Huan Liang, Rui Liu et al  2021 Chin. Phys. Lett. 38 128701
Download: PDF(3310KB)   PDF(mobile)(3419KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Topological edge flow and dissipationless odd viscosity are two remarkable features of chiral active fluids composed of active spinners. These features can significantly influence the dynamics of suspended passive particles and the interactions between the particles. By computer simulations, we investigate the transport phenomenon of anisotropic passive objects and the self-assembly behavior of passive spherical particles in the active spinner fluid. It is found that in confined systems, nonspherical passive objects can stably cling to boundary walls and are unidirectionally and robustly transported by edge flow of spinners. Furthermore, in an unconfined system, passive spherical particles are able to form stable clusters that spontaneously and unidirectionally rotate as a whole. In these phenomena, strong particle-wall and interparticle effective attractions play a vital role, which originate from spinner-mediated depletion-like interactions and can be largely enhanced by odd viscosity of spinner fluids. Our results thus provide new insight into the robust transport of cargoes and the nonequilibrium self-assembly of passive intruders.
Received: 08 October 2021      Editors' Suggestion Published: 08 December 2021
PACS:  64.75.Xc (Phase separation and segregation in colloidal systems)  
  64.75.Gh (Phase separation and segregation in model systems (hard spheres, Lennard-Jones, etc.))  
  64.75.Yz (Self-assembly)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11874397, 11774393, 11774394, and 11974044), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33030300).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/12/128701       OR      https://cpl.iphy.ac.cn/Y2021/V38/I12/128701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qing Yang
Huan Liang
Rui Liu
Ke Chen
Fangfu Ye
and Mingcheng Yang
[1] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M, and Simha R A 2013 Rev. Mod. Phys. 85 1143
[2] Das M, Schmidt C F, and Murrell M 2020 Soft Matter 16 7185
[3] Ramaswamy S 2010 Annu. Rev. Condens. Matter Phys. 1 323
[4] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[5] Zhou A, Qiao L Y, Wei G N, Jiang Z T, and Zhao Y H 2020 Chin. Phys. Lett. 37 050501
[6] Tsai J C, Ye F, Rodriguez J, Gollub J P, and Lubensky T C 2005 Phys. Rev. Lett. 94 214301
[7] Liu P, Zhu H, Zeng Y, Du G, Ning L, Wang D, Chen K, Lu Y, Zheng N, Ye F, and Yang M 2020 Proc. Natl. Acad. Sci. USA 117 11901
[8] Soni V, Bililign E S, Magkiriadou S, Sacanna S, Bartolo D, Shelley M J, and Irvine W T 2019 Nat. Phys. 15 1188
[9] Yang X, Ren C, Cheng K, and Zhang H P 2019 Phys. Rev. E 101 022603
[10] Dasbiswas K, Mandadapu K K, and Vaikuntanathan S 2018 Proc. Natl. Acad. Sci. USA 115
[11] Nguyen N, Klotsa D, Engel M, and Glotzer S C 2014 Phys. Rev. Lett. 112 075701
[12] Yeo K, Lushi E, and Vlahovska P M 2015 Phys. Rev. Lett. 114 188301
[13] Grzybowski B A and Whitesides G M 2002 Science 296 718
[14] Huang Z F, Menzel A M, and Löwen H 2020 Phys. Rev. Lett. 125 218002
[15] Klitzing K V, Dorda G, and Pepper M 1980 Phys. Rev. Lett. 45 494
[16] Thouless D J, Kohmoto M, Nightingale M P, and den Nijs M 1982 Phys. Rev. Lett. 49 405
[17] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[18] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[19] Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757
[20] Qi X L and Zhang S C 2010 Rev. Mod. Phys. 83 1057
[21] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[22] Liu R Z, Huang X, Zhao L X, Liu L M, Yin J X, Wu R, Chen G F, Wang Z Q, and Pan S H 2019 Chin. Phys. Lett. 36 117301
[23] Banerjee D, Souslov A, Abanov A G, and Vitelli V 2017 Nat. Commun. 8 1
[24] Avron J, Seiler R, and Zograf P G 1995 Phys. Rev. Lett. 75 697
[25] Lapa M F and Hughes T L 2014 Phys. Rev. E 89 043019
[26] Kogan E 2016 Phys. Rev. E 94 043111
[27] Souslov A, Dasbiswas K, Fruchart M, Vaikuntanathan S, and Vitelli V 2019 Phys. Rev. Lett. 122 128001
[28] Abanov A, Can T, and Ganeshan S 2018 SciPost Phys. 5 010
[29] Bao G and Jian Y 2021 Phys. Rev. E 103 013104
[30] Hosaka Y, Komura S, and Andelman D 2021 Phys. Rev. E 103 042610
[31] Hosaka Y, Komura S, and Andelman D 2021 arXiv:2109.02321 [cond-mat.soft]
[32] Yang Q, Zhu H, Liu P, Liu R, Shi Q, Chen K, Zheng N, Ye F, and Yang M 2021 Phys. Rev. Lett. 126 198001
[33] Dolai P, Simha A, and Mishra S 2018 Soft Matter 14 6137
[34] Angelani L 2019 J. Phys.: Condens. Matter 31 075101
[35] Takatori S C and Brady J F 2015 Soft Matter 11 7920
[36] Ma Z, Lei Q L, and Ni R 2017 Soft Matter 13 8940
[37] Wang Y, Shen Z, Xia Y, Feng G, and Tian W 2020 Chin. Phys. B 29 053103
[38] Singh D P, Choudhury U, Fischer P, and Mark A G 2017 Adv. Mater. 29 1701328
[39] Stenhammar J, Wittkowski R, Marenduzzo D, and Cates M E 2015 Phys. Rev. Lett. 114 018301
[40] Smrek J and Kremer K 2017 Phys. Rev. Lett. 118 098002
[41] Alaimo F and Voigt A 2018 Phys. Rev. E 98 032605
[42] Asakura S and Oosawa F 1954 J. Chem. Phys. 22 1255
Viewed
Full text


Abstract