Chin. Phys. Lett.  2021, Vol. 38 Issue (12): 127501    DOI: 10.1088/0256-307X/38/12/127501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Nanocavity-Mediated Fast Magnetic Vortex Core In-Situ Switching by Local Magnetic Field
Xiao-Ping Ma1†, Hongguo Yang1†, Changfeng Li1, Cheng Song2, and Hong-Guang Piao1*
1Hubei Engineering Research Center of Weak Magnetic-Field Detection, College of Science, China Three Gorges University, Yichang 443002, China
2Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Cite this article:   
Xiao-Ping Ma, Hongguo Yang, Changfeng Li et al  2021 Chin. Phys. Lett. 38 127501
Download: PDF(735KB)   PDF(mobile)(843KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fast in situ switching of magnetic vortex core in a ferromagnetic nanodisk assisted by a nanocavity, with diameter comparable to the dimension of a vortex core, is systematically investigated by changing the strength as well as the diameter of the effective circular region of the applied magnetic field. By applying a local magnetic field within a small area at the nanodisk center, fast switching time of about 35 ps is achieved with relatively low field strength (70 mT) which is beneficial for fast data reading and writing. The reason for this phenomenon is that the magnetic spins around the nanocavity is aligned along the cavity wall due to the shape anisotropy when the perpendicular field is applied, which deepens the dip around the vortex core, and thus facilitates the vortex core switching.
Received: 21 September 2021      Published: 12 November 2021
PACS:  75.75.-c (Magnetic properties of nanostructures)  
  75.75.Jn (Dynamics of magnetic nanoparticles)  
  75.78.Cd (Micromagnetic simulations ?)  
  85.70.Li (Other magnetic recording and storage devices (including tapes, disks, And drums))  
Fund: Supported by the Fund of Key Laboratory of Advanced Materials of Ministry of Education (Grant No. ADV21-20).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/12/127501       OR      https://cpl.iphy.ac.cn/Y2021/V38/I12/127501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiao-Ping Ma
Hongguo Yang
Changfeng Li
Cheng Song
and Hong-Guang Piao
[1] Parkin S S P, Hayashi M, and Thomas L 2008 Science 320 190
[2] Stanciu C D, Hansteen F, Kimel A V, Kiriyuk A, Tsukamoto A, Itoh A, and Th R 2007 Phys. Rev. Lett. 99 047601
[3] Tóbik J, Cambel V, and Karapetrov G 2012 Phys. Rev. B 86 134433
[4] Agramunt-Puig S, Del-Valle N, Navau C, and Sanchez A 2014 Appl. Phys. Lett. 104 012407
[5] UhlíR̆ V, Urbánek M, Hladík L, Spousta J, Im M Y, Fischer P, Eibagi N, Kan J J, Fullerton E E, and Šikola T 2013 Nat. Nanotechnol. 8 341
[6] Yakata S, Miyata M, Nonoguchi S, Wada H, and Kimura T 2010 Appl. Phys. Lett. 97 222503
[7] Konoto M, Yamada T, Koike K, Akoh H, Arima T, and Tokura Y 2008 J. Appl. Phys. 103 023904
[8] Gaididei Y, Sheka D D, and Mertens F G 2008 Appl. Phys. Lett. 92 012503
[9] Yakata S, Miyata M, Honda S, Itoh H, Wada H, and Kimura T 2011 Appl. Phys. Lett. 99 242507
[10] Ju W M, Bickel J E, Pradhan N, Aidala K E, and Tuominen M 2020 Nanotechnology 31 115205
[11] Manzin A and Ferrero R 2019 Appl. Phys. Lett. 115 042402
[12] Nakano K, Chiba D, Ohshima N, Kasai S, Sato T, Nakatani Y, Sekiguchi K, Kobayashi K, and Ono T 2011 Appl. Phys. Lett. 99 262505
[13] Nakano K, Tanabe K, Hiramatsu R, Chiba D, Ohshima N, Kasai S, Sato T, Nakatani Y, Sekiguchi K, Kobayashi K, and Ono T 2013 Appl. Phys. Lett. 102 072405
[14] Ma X P, Cai M X, Shim J H, Piao H G, Kim D H, and Kim D E 2021 J. Magn. Magn. Mater. 527 167758
[15] Liu Y and He H 2007 Appl. Phys. Lett. 91 242501
[16] Kammerer M, Stoll H, Noske M, Sproll M, Weigand M, Illg C, Woltersdorf G, Fähnle M, Back C, and Schütz G 2012 Phys. Rev. B 86 134426
[17] Lee K S, Guslienko K Y, Lee J Y, and Kim S K 2007 Phys. Rev. B 76 174410
[18] Xiao Q F, Rudge J, and Choi B C 2006 Appl. Phys. Lett. 89 262507
[19] Hertel R, Gliga S, Fähnle M, and Schneider C M 2007 Phys. Rev. Lett. 98 117201
[20] Okuno T, Shigeto K, Ono T, Mibu K, and Shinjo T 2002 J. Magn. Magn. Mater. 240 1
[21] Thiaville A, García J M, Dittrich R, Miltat J, and Schrefl T 2003 Phys. Rev. B 67 094410
[22] Wang R and Dong X 2012 Appl. Phys. Lett. 100 082402
[23] Dong X, Wang Z, and Wang R 2014 Appl. Phys. Lett. 104 112413
[24] Ma X P, Cai M X, Li P, Shim J H, Piao H G, and Kim D H 2020 J. Magn. Magn. Mater. 502 166481
[25] Buess M, Höllinger R, Haug T, Perzlmaier K, Krey U, Pescia D, Scheinfein M R, Weiss D, and Back C H 2004 Phys. Rev. Lett. 93 077207
[26] Rückriem R, Schrefl T, and Albrecht M 2014 Appl. Phys. Lett. 104 052414
[27] Ma X P, Shim J H, Piao H G, Kim D H, and Kim D E 2019 Jpn. J. Appl. Phys. 58 100909
[28] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, and Van Waeyenberge B 2014 AIP Adv. 4 107133
[29] Im M Y, Fischer P, Yamada K, Sato T, Kasai S, Nakatani Y, and Ono T 2012 Nat. Commun. 3 983
[30] Tudosa I, Stamm C, Kashuba A B, King F, Siegmann H C, Stöhr J, Ju G, Lu B, and Weller D 2004 Nature 428 831
Viewed
Full text


Abstract