CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Realizing n-Type GeTe through Suppressing the Formation of Cation Vacancies and Bi-Doping |
Min Zhang , Chaoliang Hu , Qi Zhang , Feng Liu , Shen Han , Chenguang Fu , and Tiejun Zhu* |
School of Materials Science and Engineering, and State Key Laboratory of Silicon Materials, Zhejiang University, Zhejiang 310027, China |
|
Cite this article: |
Min Zhang, Chaoliang Hu, Qi Zhang et al 2021 Chin. Phys. Lett. 38 127201 |
|
|
Abstract It is known that p-type GeTe-based materials show excellent thermoelectric performance due to the favorable electronic band structure. However, n-type doping in GeTe is of challenge owing to the native Ge vacancies and high hole concentration of about $10^{21}$ cm$^{-3}$. In the present work, the formation energy of cation vacancies of GeTe is increased through alloying PbSe, and further Bi-doping enables the change of carrier conduction from p-type to n-type. As a result, the n-type thermoelectric performance is obtained in GeTe-based materials. A peak $zT$ of 0.34 at 525 K is obtained for (Ge$_{0.6}$Pb$_{0.4})_{0.88}$Bi$_{0.12}$Te$_{0.6}$Se$_{0.4}$. These results highlight the realization of n-type doping in GeTe and pave the way for further optimization of the thermoelectric performance of n-type GeTe.
|
|
Received: 28 August 2021
Published: 18 November 2021
|
|
PACS: |
81.05.Hd
|
(Other semiconductors)
|
|
84.60.Rb
|
(Thermoelectric, electrogasdynamic and other direct energy conversion)
|
|
72.20.Pa
|
(Thermoelectric and thermomagnetic effects)
|
|
61.72.jd
|
(Vacancies)
|
|
|
Fund: Supported by the National Science Fund for Distinguished Young Scholars (Grant No. 51725102), and the National Natural Science Foundation of China (Grant No. 51861145305). |
|
|
[1] | Bell L E 2008 Science 321 1457 |
[2] | Zebarjadi M, Esfarjani K, Dresselhaus M S, Ren Z F, and Chen G 2012 Energy & Environ. Sci. 5 5147 |
[3] | Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 |
[4] | Goldsmid H J 2013 Introduction to Thermoelectricity (Berlin: Springer) p 3 |
[5] | Zhu T, Liu Y, Fu C, Heremans J P, Snyder J G, and Zhao X 2017 Adv. Mater. 29 1605884 |
[6] | Minnich A J, Dresselhaus M S, Ren Z F, and Chen G 2009 Energy & Environ. Sci. 2 466 |
[7] | Hao F, Qiu P, Tang Y, Bai S, Xing T, Chu H S, Zhang Q, Lu P, Zhang T, Ren D, Chen J, Shi X, and Chen L 2016 Energy & Environ. Sci. 9 3120 |
[8] | Zhu T, Fu C, Xie H, Liu Y, and Zhao X 2015 Adv. Energy Mater. 5 1500588 |
[9] | Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H, Bai S, Yang J, Zhang W, and Chen L 2011 J. Am. Chem. Soc. 133 7837 |
[10] | Li J, Zhang X, Chen Z, Lin S, Li W, Shen J, Witting I T, Faghaninia A, Chen Y, Jain A, Chen L, Snyder G J, and Pei Y 2018 Joule 2 976 |
[11] | Roychowdhury S, Samanta M, Perumal S, and Biswas K 2018 Chem. Mater. 30 5799 |
[12] | Ravich Y I 1970 Semiconducting Lead Chalcogenides (New York: Springer Science + Busness Media) |
[13] | Li J, Chen Z, Zhang X, Sun Y, Yang J, and Pei Y 2017 NPG Asia Mater. 9 e353 |
[14] | Rosi F D, Dismukes J P, and Hockings E F 1960 Electr. Eng. 79 450 |
[15] | Zhang X, Bu Z, Lin S, Chen Z, Li W, and Pei Y 2020 Joule 4 986 |
[16] | Hong M, Zou J, and Chen Z G 2019 Adv. Mater. 31 1807071 |
[17] | Bu Z L, Zhang X Y, Shan B, Tang J, Liu H X, Chen Z W, Lin S q, Li W, and Pei Y Z 2021 Sci. Adv. 7 eabf2738 |
[18] | Lewis J E 1969 Phys. Status Solidi 35 737 |
[19] | Damon D H, Lubell M S, and Mazelsky R 1967 J. Phys. Chem. Solids 28 520 |
[20] | Edwards A H, Pineda A C, Schultz P A, Martin M G, Thompson A P, Hjalmarson H P, and Umrigar C J 2006 Phys. Rev. B 73 45210 |
[21] | Perumal S, Bellare P, Shenoy U S, Waghmare U V, and Biswas K 2017 Chem. Mater. 29 10426 |
[22] | Perumal S, Roychowdhury S, Negi D S, Datta R, and Biswas K 2015 Chem. Mater. 27 7171 |
[23] | Li J, Zhang X, Lin S, Chen Z, and Pei Y 2017 Chem. Mater. 29 605 |
[24] | Li J, Chen Z, Zhang X, Yu H, Wu Z, Xie H, Chen Y, and Pei Y 2017 Adv. Sci. 4 1700341 |
[25] | Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis M G, and Tang X 2018 J. Am. Chem. Soc. 140 2673 |
[26] | Hong M, Wang Y, Liu W, Matsumura S, Wang H, Zou J, and Chen Z G 2018 Adv. Energy Mater. 8 1801837 |
[27] | Hong M, Wang Y, Feng T, Sun Q, Xu S, Matsumura S, Pantelides S T, Zou J, and Chen Z G 2019 J. Am. Chem. Soc. 141 1742 |
[28] | Sun P, Kumar K R, Lyu M, Wang Z, Xiang J, and Zhang W 2021 Innovation 2 100101 |
[29] | Ciucivara A, Sahu B R, and Kleinman L 2007 Phys. Rev. B 75 241201 |
[30] | Wang R F, Li S, Xue W H, Chen C, Wang Y M, Liu X J, and Zhang Q 2021 Rare Met. 40 40 |
[31] | Nielsen M D, Ozolins V, and Heremans J P 2013 Energy & Environ. Sci. 6 570 |
[32] | Xu X, Xie L, Lou Q, Wu D, and He J 2018 Adv. Sci. 5 1801514 |
[33] | Chattopadhyay T, Boucherle J X, and VonSchnering H G 1987 J. Phys. C 20 1431 |
[34] | Lee H S, Kim B S, Cho C W, Oh M W, Min B K, Park S D, and Lee H W 2015 Acta Mater. 91 83 |
[35] | Bu Z, Chen Z, Zhang X, Lin S, Mao J, Li W, Chen Y, and Pei Y 2020 Mater. Today Phys. 15 100260 |
[36] | Cao J, Chien S W, Tan X Y, Tan C K I, Zhu Q, Wu J, Wang X, Zhao Y, Yang L, Yan Q, Liu H, Xu J, and Suwardi A 2021 ChemNanoMat 7 476 |
[37] | Askarpour V and Maassen J 2019 Phys. Rev. B 100 75201 |
[38] | Gibbs Z M, Ricci F, Li G, Zhu H, Persson K, Ceder G, Hautier G, Jain A, and Snyder G J 2017 npj Comput. Mater. 3 8 |
[39] | Samanta M, Ghosh T, Arora R, Waghmare U V, and Biswas K 2019 J. Am. Chem. Soc. 141 19505 |
[40] | Liu Z, Sato N, Guo Q, Gao W, and Mori T 2020 NPG Asia Mater. 12 66 |
[41] | Robertson J 1983 Phys. Rev. B 28 4671 |
[42] | Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851 |
[43] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[44] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[45] | Huo H, Wang Y, Xi L, Yang J, and Zhang W 2021 J. Mater. Chem. C 9 5765 |
[46] | Bu Z, Li W, Li J, Zhang X, Mao J, Chen Y, and Pei Y 2019 Mater. Today Phys. 9 100096 |
[47] | Xie L, Chen Y, Liu R, Song E, Xing T, Deng T, Song Q, Liu J, Zheng R, Gao X, Bai S, and Chen L 2020 Nano Energy 68 104347 |
[48] | Yue L, Fang T, Zheng S, Cui W, Wu Y, Chang S, Wang L, Bai P, and Zhao H 2019 ACS Appl. Energy Mater. 2 2596 |
[49] | Zhang X, Li J, Wang X, Chen Z, Mao J, Chen Y, and Pei Y 2018 J. Am. Chem. Soc. 140 15883 |
[50] | Snyder G J, Snyder A H, Wood M, Gurunathan R, Snyder B H, and Niu C 2020 Adv. Mater. 32 2001537 |
[51] | Ren Q, Fu C, Qiu Q, Dai S, Liu Z, Masuda T, Asai S, Hagihala M, Lee S, Torri S, Kamiyama T, He L, Tong X, Felser C, Singh D J, Zhu T, Yang J, and Ma J 2020 Nat. Commun. 11 3142 |
[52] | Goldsmid H J and Sharp J W 1999 J. Electron. Mater. 28 869 |
[53] | Cahill D G, Watson S K, and Pohl R O 1992 Phys. Rev. B 46 6131 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|