FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Spatiotemporal Modulation of Thermal Emission from Thermal-Hysteresis Vanadium Dioxide for Multiplexing Thermotronics Functionalities |
Guanying Xing, Weixian Zhao, Run Hu*, and Xiaobing Luo |
School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
|
Cite this article: |
Guanying Xing, Weixian Zhao, Run Hu et al 2021 Chin. Phys. Lett. 38 124401 |
|
|
Abstract Taking heat positively as the information carrier, thermotronics can exempt the long-lasting thermal issue of electronics fundamentally, yet has been faced with the challenging multiplexing integration of diverse functionalities. Here, we demonstrate a spatiotemporal modulation platform to achieve multiplexing thermotronics functionalities based on the thermal-hysteresis vanadium dioxide, including negative-differential thermal emission, thermal diode, thermal memristor, thermal transistor, and beyond. The physics behind the multiplexing thermotronics lies in the thermal hysteresis emission characteristics of the phase-changing vanadium dioxide during the spatiotemporal modulation. The present spatiotemporal modulation is expected to stimulate more exploration on novel functionalities, system integration, and practical applications of thermotronics.
|
|
Received: 30 September 2021
Published: 25 November 2021
|
|
PACS: |
44.40.a
|
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
52.25.Os
|
(Emission, absorption, and scattering of electromagnetic radiation ?)
|
|
83.10.Tv
|
(Structural and phase changes)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 52076087), and the Applied Basic Frontier Program of Wuhan City (Grant No. 2020010601012197). |
|
|
[1] | Ben-Abdallah P and Biehs S A 2017 Z. Naturforsch. A 72 151 |
[2] | Li N, Ren J, Wang L, Zhang G, Hanggi P, and Li B 2012 Rev. Mod. Phys. 84 1045 |
[3] | Kang H, Yang F, and Urban J J 2018 Phys. Rev. Appl. 10 024034 |
[4] | Ben-Abdallah P and Biehs S A 2014 Phys. Rev. Lett. 112 044301 |
[5] | Ordonez-Miranda J, Ezzahri Y, Drevillon J, and Joulain K 2016 Phys. Rev. Appl. 6 054003 |
[6] | Ordonez-Miranda J, Ezzahri Y, Tiburcio-Moreno J A, Joulain K, and Drevillon J 2019 Phys. Rev. Lett. 123 025901 |
[7] | Wang L and Li B W 2008 Phys. Rev. Lett. 101 267203 |
[8] | Hu R, Huang S, Wang M, Zhou L, Peng X, and Luo X 2018 Phys. Rev. Appl. 10 054032 |
[9] | Kubytskyi V, Biehs S A, and Ben-Abdallah P 2014 Phys. Rev. Lett. 113 074301 |
[10] | Paolucci F, Marchegiani G, Strambini E, and Giazotto F 2018 Phys. Rev. Appl. 10 024003 |
[11] | Wang L and Li B 2007 Phys. Rev. Lett. 99 177208 |
[12] | Loke D, Skelton J M, Chong T C, and Elliott S R 2016 ACS Appl. Mater. & Interfaces 8 34530 |
[13] | Kats M A, Blanchard R, Zhang S, Genevet P, Ko C, Ramanathan S, and Capasso F 2013 Phys. Rev. X 3 041004 |
[14] | Gomez-Heredia C L, Ramirez-Rincon J A, Ordonez-Miranda J, Ares O, Alvarado-Gil J J, Champeaux C, Dumas-Bouchiat F, Ezzahri Y, and Joulain K 2018 Sci. Rep. 8 8479 |
[15] | Qazilbash M M, Brehm M, Chae B G, Ho P C, Andreev G O, Kim B J, Yun S J, Balatsky A V, Maple M B, Keilmann F, Kim H T, Basov D N 2007 Science 318 1750 |
[16] | Tang K, Wang X, Dong K, Li Y, Li J, Sun B, Zhang X, Dames C, Qiu C, Yao J, and Wu J 2020 Adv. Mater. 32 1907071 |
[17] | Chen S, Liu J, Wang L, Luo H, and Gao Y 2014 J. Phys. Chem. C 118 18938 |
[18] | Petit C, Frigerio J M, and Goldmann M 1999 J. Phys.: Condens. Matter 11 3259 |
[19] | Liang Y G, Lee S, Yu H S, Zhang H R, Liang Y J, Zavalij P Y, Chen X, James R D, Bendersky L A, Davydov A V, Zhang X H, and Takeuchi I 2020 Nat. Commun. 11 3539 |
[20] | Du J, Gao Y F, Luo H J, Kang L T, Zhang Z T, Chen Z, and Cao C X 2011 Sol. Energy Mater. Sol. Cells 95 469 |
[21] | Shahsafi A, Roney P, Zhou Y, Zhang Z, Xiao Y, Wan C, Wambold R, Salman J, Yu Z, Li J, Sadowski J T, Comin R, Ramanathan S, and Kats M A 2019 Proc. Natl. Acad. Sci. USA 116 26402 |
[22] | Bierman D M, Lenert A, Kats M A, Zhou Y, Zhang S, De La O M, Ramanathan S, Capasso F, and Wang E N 2018 Phys. Rev. Appl. 10 021001 |
[23] | Torrent D, Poncelet O, and Batsale J C 2018 Phys. Rev. Lett. 120 125501 |
[24] | Wang Y, Vallabhaneni Y, Hu J, Qiu B, Chen Y P, and Ruan X 2014 Nano Lett. 14 592 |
[25] | Cottrill A L, Wang S, Liu A T, Wang W J, and Strano M S 2018 Adv. Energy Mater. 8 1702692 |
[26] | Cottrill A L and Strano M S 2015 Adv. Energy Mater. 5 1500921 |
[27] | Gaddam P R, Huxtable S T, and Ducker W A 2017 Int. J. Heat Mass Transfer 106 741 |
[28] | Otey C R, Lau W T, and Fan S 2010 Phys. Rev. Lett. 104 154301 |
[29] | Fiorino A, Thompson D, Zhu L, Mittapally R, Biehs S A, Bezencenet O, El-Bondry N, Bansropun S, Ben-Abdallah P, Meyhofer E, and Reddy P 2018 ACS Nano 12 5774 |
[30] | Jia S, Fu Y, Su Y, and Ma Y 2018 Opt. Lett. 43 5619 |
[31] | Kasali S O, Ordonez-Miranda J, and Joulain K 2020 Int. J. Heat Mass Transfer 154 119739 |
[32] | Strukov D B, Snider G S, Stewart D R, and Williams R S 2008 Nature 453 80 |
[33] | Magnus F, Wood B, Moore J, Morrison K, Perkins G, Fyson J, Wiltshire M C K, Caplin D, Cohen L F, and Pendry J B 2008 Nat. Mater. 7 295 |
[34] | Lu H and Seabaugh A 2014 IEEE J. Electron Devices Soc. 2 44 |
[35] | Li B, Wang L, and Casati G 2006 Appl. Phys. Lett. 88 143501 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|