CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes |
Fan Gao1,2 and Yongqing Li1,2,3,4* |
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 3Songshan Lake Materials Laboratory, Dongguan 523808, China 4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
|
|
Cite this article: |
Fan Gao and Yongqing Li 2021 Chin. Phys. Lett. 38 117302 |
|
|
Abstract In the transport studies of topological insulators, microflakes exfoliated from bulk single crystals are often used because of the convenience in sample preparation and the accessibility to high carrier mobilities. Here, based on finite element analysis, we show that for the non-Hall-bar shaped topological insulator samples, the measured four-point resistances can be substantially modified by the sample geometry, bulk and surface resistivities, and magnetic field. Geometry correction factors must be introduced for accurately converting the four-point resistances to the longitudinal resistivity and Hall resistivity. The magnetic field dependence of inhomogeneous current density distribution can lead to pronounced positive magnetoresistance and nonlinear Hall effect that would not exist in the samples of ideal Hall bar geometry.
|
|
Received: 22 August 2021
Editors' Suggestion
Published: 27 October 2021
|
|
PACS: |
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11961141011), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the National Key Research and Development Program of China (Grant No. 2016YFA0300600). |
|
|
[1] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 |
[2] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[3] | Ando Y 2013 J. Phys. Soc. Jpn. 82 102001 |
[4] | Culcer D, Cem K A, Li Y, and Tkachov G 2020 2D Mater. 7 022007 |
[5] | Novoselov K S, Mishchenko A, Carvalho A, and Castro N A H 2016 Science 353 aac9439 |
[6] | Xu Y, Miotkowski I, Liu C, Tian J et al. 2014 Nat. Phys. 10 956 |
[7] | Xu Y, Miotkowski I, and Chen Y P 2016 Nat. Commun. 7 11434 |
[8] | Ichimura K, Matsushita S Y, Huynh K K, and Tanigaki K 2019 Appl. Phys. Lett. 115 052104 |
[9] | Xie F, Zhang S, Liu Q, Xi C et al. 2019 Phys. Rev. B 99 081113 |
[10] | Xu Y, Jiang G, Miotkowski I, Biswas R R et al. 2019 Phys. Rev. Lett. 123 207701 |
[11] | Chong S K, Han K B, Sparks T D, and Deshpande V V 2019 Phys. Rev. Lett. 123 036804 |
[12] | Wang J, Gorini C, Richter K, Wang Z et al. 2020 Nano Lett. 20 8493 |
[13] | Chong S K, Tsuchikawa R, Harmer J, Sparks T D et al. 2020 ACS Nano 14 1158 |
[14] | Liu S, Guillou H, Kent A D, Stupian G W et al. 1998 J. Appl. Phys. 83 6161 |
[15] | Wang X, Du Y, Dou S, and Zhang C 2012 Phys. Rev. Lett. 108 266806 |
[16] | Chiu S P and Lin J J 2013 Phys. Rev. B 87 035122 |
[17] | Gehring P, Benia H M, Weng Y, Dinnebier R et al. 2013 Nano Lett. 13 1179 |
[18] | Xia B, Ren P, Sulaev A, Liu P et al. 2013 Phys. Rev. B 87 085442 |
[19] | Costache M V, Neumann I, Sierra J F, Marinova V et al. 2014 Phys. Rev. Lett. 112 086601 |
[20] | Cho S, Dellabetta B, Zhong R, Schneeloch J et al. 2015 Nat. Commun. 6 7634 |
[21] | Sulaev A, Zeng M, Shen S Q, Cho S K et al. 2015 Nano Lett. 15 2061 |
[22] | Chen J, He X Y, Wu K H, Ji Z Q et al. 2011 Phys. Rev. B 83 241304 |
[23] | Lee J, Park J, Lee J H, Kim J S et al. 2012 Phys. Rev. B 86 245321 |
[24] | Lu H Z and Shen S Q 2014 Phys. Rev. Lett. 112 146601 |
[25] | Ren Z, Taskin A A, Sasaki S, Segawa K et al. 2011 Phys. Rev. B 84 165311 |
[26] | Segawa K, Ren Z, Sasaki S, Tsuda T et al. 2012 Phys. Rev. B 86 075306 |
[27] | Pan Y, Wu D, Angevaare J R, Luigjes H et al. 2014 New J. Phys. 16 123035 |
[28] | Misawa T, Nakamura S, Okazaki Y, Fukuyama Y et al. 2020 J. Phys.: Condens. Matter 32 405704 |
[29] | Lin C J, He X Y, Liao J, Wang X X et al. 2013 Phys. Rev. B 88 041307 |
[30] | Liao J, Ou Y, Liu H, He K et al. 2017 Nat. Commun. 8 16071 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|