Chin. Phys. Lett.  2021, Vol. 38 Issue (10): 107101    DOI: 10.1088/0256-307X/38/10/107101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films
Xuedong Xie1, Dongjing Lin1, Li Zhu1, Qiyuan Li1, Junyu Zong1, Wang Chen1, Qinghao Meng1, Qichao Tian1, Shao-Chun Li1,2, Xiaoxiang Xi1,2, Can Wang1,2*, and Yi Zhang1,2*
1National Laboratory of Solid State Microstructure, School of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Xuedong Xie, Dongjing Lin, Li Zhu et al  2021 Chin. Phys. Lett. 38 107101
Download: PDF(7500KB)   PDF(mobile)(7964KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Understanding the interplay between superconductivity and charge-density wave (CDW) in NbSe$_{2}$ is vital for both fundamental physics and future device applications. Here, combining scanning tunneling microscopy, angle-resolved photoemission spectroscopy and Raman spectroscopy, we study the CDW phase in the monolayer NbSe$_{2}$ films grown on various substrates of bilayer graphene (BLG), SrTiO$_{3}$(111), and Al$_{2}$O$_{3}$(0001). It is found that the two stable CDW states of monolayer NbSe$_{2}$ can coexist on NbSe$_{2}$/BLG surface at liquid-nitrogen temperature. For the NbSe$_{2}$/SrTiO$_{3}$(111) sample, the unidirectional CDW regions own the kinks at $\pm 41$ meV and a wider gap at 4.2 K. It is revealed that the charge transfer from the substrates to the grown films will influence the configurations of the Fermi surface, and induce a 130 meV lift-up of the Fermi level with a shrink of the Fermi pockets in NbSe$_{2}$/SrTiO$_{3}$(111) compared with the NbSe$_{2}$/BLG. Combining the temperature-dependent Raman experiments, we suggest that the electron-phonon coupling in monolayer NbSe$_{2}$ dominates its CDW phase transition.
Received: 25 June 2021      Editors Suggestion Published: 28 September 2021
PACS:  71.45.Lr (Charge-density-wave systems)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11774154, 11790311, and 12004172), the National Key Research and Development Program of China (Grant No. 2018YFA0306800), the Fundamental Research Funds for the Central Universities (Grant No. 0204-14380186), the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 2020Z172), the Program for High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu Province, and the Program B for Outstanding Ph.D. Candidates of Nanjing University.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/38/10/107101       OR      https://cpl.iphy.ac.cn/Y2021/V38/I10/107101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xuedong Xie
Dongjing Lin
Li Zhu
Qiyuan Li
Junyu Zong
Wang Chen
Qinghao Meng
Qichao Tian
Shao-Chun Li
Xiaoxiang Xi
Can Wang
and Yi Zhang
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Barhoumi M, Lazaar K, and Said M 2018 Physica E 104 155
[3] Chhowalla M, Voiry D, Yang J, Shin H S, and Loh K P 2015 MRS Bull. 40 585
[4] Datta I, Chae S H, Bhatt G R, Tadayon M A, Li B, Yu Y, Park C, Park J, Cao L, Basov D et al. 2020 Nat. Photon. 14 256
[5] Mak K F and Shan J 2016 Nat. Photon. 10 216
[6] Ponraj J S, Xu Z Q, Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K et al. 2016 Nanotechnology 27 462001
[7] Li X and Wu X 2016 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6 441
[8] Feng Y P, Shen L, Yang M, Wang A, Zeng M, Wu Q, Chintalapati S, and Chang C R 2017 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 7 e1313
[9] Zhu X, Cao Y, Zhang J, Plummer E, and Guo J 2015 Proc. Natl. Acad. Sci. USA 112 2367
[10] Boubeche M, Yu J, Chushan L, Huichao W, Zeng L, He Y, Wang X, Su W, Wang M, Yao D X et al. 2021 Chin. Phys. Lett. 38 037401
[11] Borisenko S, Kordyuk A, Zabolotnyy V, Inosov D, Evtushinsky D, Büchner B, Yaresko A, Varykhalov A, Follath R, Eberhardt W et al. 2009 Phys. Rev. Lett. 102 166402
[12] Xi X, Zhao L, Wang Z, Berger H, Forró L, Shan J, and Mak K F 2015 Nat. Nanotechnol. 10 765
[13] Peierls R E and Roberts L D 1956 Phys. Today 9 29
[14] Boriack M and Overhauser A 1977 Phys. Rev. B 15 2847
[15] Pouget J P 2016 C. R. Phys. 17 332
[16] Choi J H and Cho J H 2006 J. Am. Chem. Soc. 128 11340
[17] Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami T, Said A, and Reznik D 2011 Phys. Rev. Lett. 107 107403
[18] Divilov S, Wan W, Dreher P, Bölen E, Sánchez-Portal D, Ugeda M M, and Ynduráin F 2021 J. Phys.: Condens. Matter 33 295804
[19] Hu T, Bao H, Liu S, Liu X, Ma D, Ma F, and Xu K 2017 Carbon 120 219
[20] Chen W, Xie X, Zong J, Chen T, Lin D, Yu F, Jin S, Zhou L, Zou J, Sun J et al. 2019 Sci. Rep. 9 2685
[21] Xie X, Ding Y, Zong J, Chen W, Zou J, Zhang H, Wang C, and Zhang Y 2020 Appl. Phys. Lett. 116 193101
[22] Guster B, Rubio-Verdú C, Robles R, Zaldı́var J, Dreher P, Pruneda M, Silva-Guillén J, Choi D J, Pascual J I, Ugeda M M et al. 2019 Nano Lett. 19 3027
[23] Gye G, Oh E, and Yeom H W 2019 Phys. Rev. Lett. 122 016403
[24] Chen W, Hu M, Zong J, Xie X, Meng Q, Yu F, Wang L, Ren W, Chen A, Liu G et al. 2021 Adv. Mater. 33 2004930
[25] Soumyanarayanan A, Yee M M, He Y, Van Wezel J, Rahn D J, Rossnagel K, Hudson E, Norman M R, and Hoffman J E 2013 Proc. Natl. Acad. Sci. USA 110 1623
[26] Flicker F and Van Wezel J 2015 Nat. Commun. 6 7034
[27] Rossnagel K, Seifarth O, Kipp L, Skibowski M, Voß D, Krüger P, Mazur A, and Pollmann J 2001 Phys. Rev. B 64 235119
[28] Johannes M, Mazin I, and Howells C 2006 Phys. Rev. B 73 205102
[29] Wilson J, Di Salvo F, and Mahajan S 1974 Phys. Rev. Lett. 32 882
[30] Feng Y, Wang J, Jaramillo R, Van Wezel J, Haravifard S, Srajer G, Liu Y, Xu Z A, Littlewood P, and Rosenbaum T 2012 Proc. Natl. Acad. Sci. USA 109 7224
[31] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z et al. 2016 Nat. Phys. 12 92
[32] Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, and Takagi H 2001 Science 294 2518
[33] Weber F, Hott R, Heid R, Lev L, Caputo M, Schmitt T, and Strocov V 2018 Phys. Rev. B 97 235122
[34] Burton J, Sun L, Pophristic M, Lukacs S, Long F, Feng Z, and Ferguson I 1998 J. Appl. Phys. 84 6268
[35] Brun C, Cren T, and Roditchev D 2017 Supercond. Sci. Technol. 30 013003
[36] Wu Q, Zhou H, Wu Y, Hu L, Ni S, Tian Y, Sun F, Zhou F, Dong X, Zhao Z et al. 2020 Chin. Phys. Lett. 37 097802
Viewed
Full text


Abstract