CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Observation of the Pinning-Induced Crystal-Hexatic-Glass Transition in Two-Dimensional Colloidal Suspensions |
Xiaoyan Sun1,2†, Huaguang Wang2†, Hao Feng3, Zexin Zhang2,3*, and Yuqiang Ma4* |
1Department of Optoelectronics and Energy Engineering, City College of Suzhou, Suzhou 215104, China 2College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China 3Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China 4National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
|
|
Cite this article: |
Xiaoyan Sun, Huaguang Wang, Hao Feng et al 2021 Chin. Phys. Lett. 38 106101 |
|
|
Abstract Identification of the glass formation process in various conditions is of importance for fundamental understanding of the mechanism of glass transitions as well as for developments and applications of glassy materials. We investigate the role of pinning in driving the transformation of crystal into glass in two-dimensional colloidal suspensions of monodisperse microspheres. The pinning is produced by immobilizing a fraction of microspheres on the substrate of sample cells where the mobile microspheres sediment. Structurally, the crystal-hexatic-glass transition occurs with increasing the number fraction of pinning $\rho_{\rm pinning}$, and the orientational correlation exhibits a change from quasi-long-range to short-range order at $\rho_{\rm pinning} = 0.02$. Interestingly, the dynamics shows a non-monotonic change with increasing the fraction of pinning. This is due to the competition between the disorder that enhances the dynamics and the pinning that hinders the particle motions. Our work highlights the important role of the pinning on the colloidal glass transition, which not only provides a new strategy to prevent crystallization forming glass, but also is helpful for understanding of the vitrification in colloidal systems.
|
|
Received: 21 July 2021
Published: 18 September 2021
|
|
PACS: |
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
47.57.-s
|
(Complex fluids and colloidal systems)
|
|
64.70.-p
|
(Specific phase transitions)
|
|
64.70.kj
|
(Glasses)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 12074275, 11704269, and 11704270), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant Nos. 20KJA150008 and 17KJB140020), and the PAPD Program of Jiangsu Higher Education Institutions. |
|
|
[1] | Nelson D R and Halperin B I 1979 Phys. Rev. B 19 2457 |
[2] | Tamborini E, Royall C P, and Cicuta P 2015 J. Phys.: Condens. Matter 27 194124 |
[3] | Vanblaaderen A and Wiltzius P 1995 Science 270 1177 |
[4] | Ediger M D, Angell C A, and Nagel S R 1996 J. Phys. Chem. 100 13200 |
[5] | Yunker P, Zhang Z X, and Yodh A G 2010 Phys. Rev. Lett. 104 015701 |
[6] | Kim K, Miyazaki K, and Saito S 2009 Europhys. Lett. 88 36002 |
[7] | Kob W and Berthier L 2013 Phys. Rev. Lett. 110 245702 |
[8] | Kim K, Miyazaki K, and Saito S 2011 J. Phys.: Condens. Matter 23 234123 |
[9] | Hocky G M, Berthier L, and Reichman D R 2014 J. Chem. Phys. 141 224503 |
[10] | Cammarota C and Biroli G 2012 Proc. Natl. Acad. Sci. USA 109 8850 |
[11] | Cammarota C 2013 Europhys. Lett. 101 56001 |
[12] | Kob W and Coslovich D 2014 Phys. Rev. E 90 052305 |
[13] | Han Y, Ha N Y, Alsayed A M, and Yodh A G 2008 Phys. Rev. E 77 041406 |
[14] | Gokhale S, Nagamanasa K H, Ganapathy R, and Sood A K 2014 Nat. Commun. 5 4685 |
[15] | Liu L L, Kheifets S, Ginis V, Di Donato A, and Capasso F 2017 Proc. Natl. Acad. Sci. USA 114 11087 |
[16] | Yada M, Yamamoto J, and Yokoyama H 2004 Phys. Rev. Lett. 92 185501 |
[17] | Crocker J C, Matteo J A, Dinsmore A D, and Yodh A G 1999 Phys. Rev. Lett. 82 4352 |
[18] | Israelachvili J N 2011 Intermolecular and Surface Forces 3nd edn (New York: Academic Press) |
[19] | Zheng Z and Han Y 2010 J. Chem. Phys. 133 124509 |
[20] | Crocker J C and Grier D G 1996 J. Colloid Interface Sci. 179 298 |
[21] | Sun X Y, Li Y, Zhang T H, Ma Y Q, and Zhang Z X 2013 Langmuir 29 7216 |
[22] | Zhou C C, Shen H C, Tong H, Xu N, and Tan P 2020 Chin. Phys. Lett. 37 086301 |
[23] | Shen H C, Tong H, Tan P, and Xu L 2019 Nat. Commun. 10 1737 |
[24] | Nelson D R 2002 Defects and Geometry in Condensed Matter Physics (Cambridge: Cambridge University Press) |
[25] | Tong H and Xu N 2014 Phys. Rev. E 90 010401 |
[26] | Nabarro F R N 1987 Theory of Crystal Dislocations (Oxford: Oxford Clarendon Press) |
[27] | Pertsinidis A and Ling X S 2001 Phys. Rev. Lett. 87 098303 |
[28] | Chen Y, Tan X L, Wang H G, Zhang Z X, Kosterlitz J M, and Ling X S 2021 Phys. Rev. Lett. 127 018004 |
[29] | Liu J, Tong H, Nie Y H, and Xu N 2020 Chin. Phys. B 29 126302 |
[30] | Deutschländer S, Horn T, Löwen H, Maret G, and Keim P 2013 Phys. Rev. Lett. 111 098301 |
[31] | Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99 |
[32] | Eral H B, Mugele F, and Duits M H 2011 Langmuir 27 12297 |
[33] | Zhang Z X, Yunker P J, Habdas P, and Yodh A G 2011 Phys. Rev. Lett. 107 208303 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|