Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 097801    DOI: 10.1088/0256-307X/37/9/097801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances
Yanyan Cao1, Bocheng Yu1, Yangyang Fu2, Lei Gao1*, and Yadong Xu1*
1School of Physical Science and Technology, Soochow University, Suzhou 215006, China
2College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Cite this article:   
Yanyan Cao, Bocheng Yu, Yangyang Fu et al  2020 Chin. Phys. Lett. 37 097801
Download: PDF(965KB)   PDF(mobile)(959KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In this work, we present a new mechanism for designing phase-gradient metasurfaces (PGMs) to control an electromagnetic wavefront with high efficiency. Specifically, we design a transmission-type PGM, formed by a periodic subwavelength metallic slit array filled with identical dielectrics of different heights. It is found that when Fabry–Pérot (FP) resonances occur locally inside the dielectric regions, in addition to the common phenomenon of complete transmission, the transmitted phase differences between two adjacent slits are exactly the same, being a nonzero constant. These local FP resonances ensure total phase shift across a supercell, fully covering a range of 0 to $2\pi$, satisfying the design requirements of PGMs. Further research reveals that, due to local FP resonances, there is a one-to-one correspondence between the phase difference and the permittivity of the filled dielectric. A similar approach can be extended to the reflection-type case and other wavefront transformations, creating new opportunities for wave manipulation.
Received: 29 June 2020      Published: 01 September 2020
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.79.Dj (Gratings)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11974010, 11604229 and 11774252), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20161210 and BK20171206), the China Postdoctoral Science Foundation (Grant No. 2018T110540), the Qinglan Project of Jiangsu Province of China (Grant No. BRA2015353), and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/9/097801       OR      https://cpl.iphy.ac.cn/Y2020/V37/I9/097801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yanyan Cao
Bocheng Yu
Yangyang Fu
Lei Gao
and Yadong Xu
[1] Estakhri N M and Alù A 2016 J. Opt. Soc. Am. B 33 A21
[2] Kildishev A V, Boltasseva A and Shalaev V M 2013 Science 339 1232009
[3] Minovich A E, Miroshnichenko A E, Bykov A Y et al. 2015 Laser & Photon. Rev. 9 195
[4] Xu Y, Fu Y Y and Chen H 2016 Nat. Rev. Mater. 1 16067
[5] Yu N and Capasso F 2014 Nat. Mater. 13 139
[6] Yu N, Genevet P, Kats M A et al. 2011 Science 334 333
[7] Wang S M, Wu P C, Su V C et al. 2018 Nat. Nanotechnol. 13 227
[8] Xu Y, Fu Y and Chen H 2015 Sci. Rep. 5 12219
[9] Yin X, Ye Z, Rho J et al. 2013 Science 339 1405
[10] Genevet P, Lin J, Kats M A et al. 2012 Nat. Commun. 3 1278
[11] Cui T J, Qi M Q, Wan X et al. 2014 Light: Sci. & Appl. 3 e218
[12] Ni X, Wong Z J, Mrejen M et al. 2015 Science 349 1310
[13] Sun S, He Q, Xiao S et al. 2012 Nat. Mater. 11 426
[14] Pfeiffer C and Grbic A 2013 Phys. Rev. Lett. 110 197401
[15] Wong Alex M H and Eleftheriades George V 2018 Phys. Rev. X 8 011036
[16] Zhang L, Ding J, Zheng H et al. 2018 Nat. Commun. 9 1481
[17] Arbabi A, Horie Y, Bagheri M et al. 2015 Nat. Nanotechnol. 10 937
[18] Ra'di Y, Sounas D L and Alù A 2017 Phys. Rev. Lett. 119 067404
[19] Marcus S W and Epstein A 2019 Phys. Rev. B 100 115144
[20] Palm D, Dang Z and Rahm M 2019 Sci. Rep. 9 10792
[21] Fu Y, Shen C, Cao Y et al. 2019 Nat. Commun. 10 2326
[22] Li Y, Shen C, Xie Y et al. 2017 Phys. Rev. Lett. 119 035501
[23] Wang X, Díaz-Rubio A, Asadchy V S et al. 2018 Phys. Rev. Lett. 121 256802
[24] Shen C and Cummer S A 2018 Phys. Rev. Appl. 9 054009
[25] Cao Y, Fu Y, Zhou Q et al. 2019 Phys. Rev. Appl. 12 024006
[26] Shi H, Wang C, Du C et al. 2005 Opt. Express 13 6815
[27] Qian E, Fu Y, Xu Y et al. 2016 Europhys. Lett. 114 34003
[28] Fu Y, Cao Y and Xu Y 2019 Appl. Phys. Lett. 114 053502
[29] Xu Y, Gu C, Hou B et al. 2013 Nat. Commun. 4 2561
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 097801
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 097801
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 097801
[4] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 097801
[5] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 097801
[6] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 097801
[7] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 097801
[8] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 097801
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 097801
[10] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 097801
[11] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 097801
[12] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 097801
[13] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 097801
[14] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 097801
[15] Kai-Lun Zhang, Zhi-Ling Hou, Ling-Bao Kong, Hui-Min Fang, Ke-Tao Zhan. Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials[J]. Chin. Phys. Lett., 2017, 34(9): 097801
Viewed
Full text


Abstract