Chin. Phys. Lett.  2020, Vol. 37 Issue (9): 097404    DOI: 10.1088/0256-307X/37/9/097404
Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe$_{2}$
Ya-Ting Jia1,2†, Chun-Sheng Gong3†, Yi-Xuan Liu3, Jian-Fa Zhao1, Cheng Dong4, Guang-Yang Dai1, Xiao-Dong Li5, He-Chang Lei3*, Run-Ze Yu1*, Guang-Ming Zhang6,7, and Chang-Qing Jin1,2*
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100190, China
3Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
4Peking University Shenzhen Graduate School, School of Advanced Materials, Shenzhen 518055, China
5Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
6State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
7Frontier Science Center for Quantum Information, Beijing 100084, China
Cite this article:   
Ya-Ting Jia, Chun-Sheng Gong, Yi-Xuan Liu et al  2020 Chin. Phys. Lett. 37 097404
Download: PDF(1103KB)   PDF(mobile)(1093KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Mott transition is one of the fundamental issues in condensed matter physics, especially in the system with antiferromagnetic long-range order. However, such a transition is rare in quantum spin liquid (QSL) systems without long-range order. Here we report the experimental pressure-induced insulator to metal transition followed by the emergence of superconductivity in the QSL candidate NaYbSe$_{2}$ with a triangular lattice of 4$f$ Yb$^{3+}$ ions. Detail analysis of transport properties in metallic state shows an evolution from non-Fermi liquid to Fermi liquid behavior when approaching the vicinity of superconductivity. An irreversible structure phase transition occurs around 11 GPa, which is revealed by the x-ray diffraction. These results shed light on the Mott transition in the QSL systems.
Received: 19 August 2020      Published: 26 August 2020
PACS:  74.25.Fy  
  74.25.Dw (Superconductivity phase diagrams)  
  74.62.Fj (Effects of pressure)  
  73.43.Nq (Quantum phase transitions)  
Fund: This work was supported by the National Key R&D Program of China (Grant Nos. 2016YFA0300504, 2018YFE0202600 and 2018YFA0305701), the National Natural Science Foundation of China (Grant Nos. 11774423, 11822412 and 11921004), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant Nos. 18XNLG14 and 19XNLG17).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Ya-Ting Jia
Chun-Sheng Gong
Yi-Xuan Liu
Jian-Fa Zhao
Cheng Dong
Guang-Yang Dai
Xiao-Dong Li
He-Chang Lei
Run-Ze Yu
Guang-Ming Zhang
and Chang-Qing Jin
[1] Balents L 2010 Nature 464 199
[2] Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502
[3] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys. 89 025003
[4] Feng Z L, Yi W, Zhu K J, Wei Y, Miao S S, Ma J, Luo J L, Li S L, Meng Z Y and Shi Y G 2019 Chin. Phys. Lett. 36 017502
[5] Feng Z L, Li Z, Meng X, Yi W, Wei Y, Zhang J, Wang Y C, Jiang W, Liu Z, Li S Y, Liu F, Luo J L, Li S L, Zheng G Q, Meng Z Y, Mei J W and Shi Y G 2017 Chin. Phys. Lett. 34 077502
[6] Anderson P W 1987 Science 235 1196
[7] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[8] Kelly Z A, Gallagher M J and McQueen T M 2016 Phys. Rev. X 6 041007
[9] Liu Q, Dalpian G M and Zunger A 2019 Phys. Rev. Lett. 122 106403
[10] Ito H, Ishiguro T, Kubota M and Saito G 1996 J. Phys. Soc. Jpn. 65 2987
[11] Kurosaki Y, Shimizu Y, Miyagawa K, Kanoda K and Saito G 2005 Phys. Rev. Lett. 95 177001
[12] Galitski V and KimY B 2007 Phys. Rev. Lett. 99 266403
[13] Qi Q and Sachdev S 2008 Phys. Rev. B 77 165112
[14] Powell B J and McKenzie R H 2011 Rep. Prog. Phys. 74 056501
[15] Kanoda K and Kato R 2011 Annu. Rev. Condens. Matter Phys. 2 167
[16] Shimizu Y, Hiramatsu T, Maesato M, Otsuka A, Yamochi H, Ono A, Itoh M, Yoshida M, Takigawa M, YoshidaY and Saito G 2016 Phys. Rev. Lett. 117 107203
[17] Kozlenko D P, Kusmartseva A F, Lukin E V, Keen D A, Marshall W G, de Vries M A and Kamenev K V 2012 Phys. Rev. Lett. 108 187207
[18] Bastien G, Garbarino G, Yadav R, Martinez-Casado F J, Beltrán Rodríguez R, Stahl Q, Kusch M, Limandri S P, Ray R, Lampen-Kelley P, Mandrus D G, Nagler S E, Roslova M, Isaeva A, Doert T, Hozoi L, Wolter A U B, Büchner B, Geck J and van den Brink J 2018 Phys. Rev. B 97 241108
[19] Clancy J P, Gretarsson H, Sears J A, Singh Y, Desgreniers S, Mehlawat K, Layek S, Rozenberg G K, Ding Y, Upton M H, Casa D, Chen N, Im J, Lee Y, Yadav R, Hozoi L, Efremov D, van den Brink J and Kim Y J 2018 npj Quantum Mater. 3 35
[20] Wang Z, Guo J, Tafti F F, Hegg A, Sen S, Sidorov V A, Wang L, Cai S, Yi W, Zhou Y, Wang H, Zhang S, Yang K, Li A, Li X, Li Y, Liu J, Shi Y, Ku W, Wu Q, Cava R J and Sun L 2018 Phys. Rev. B 97 245149
[21] Podolsky D, Paramekanti A, Kim Y and Senthil T 2009 Phys. Rev. Lett. 102 186401
[22] Liu W, Zhang Z, Ji J, Liu Y, Li J, Wang X, Lei H, Chen G and Zhang Q 2018 Chin. Phys. Lett. 35 117501
[23] Baenitz M, Schlender P, Sichelschmidt J, Onykiienko Y, Zangeneh Z, Ranjith K, Sarkar R, Hozoi L, Walker H, Orain J, Yasuoka H, van den Brink J, Klauss H, Inosov D and Doert T 2018 Phys. Rev. B 98 220409
[24] Bordelon M, Kenney E, Liu C, Hogan H, Posthuma L, Kavand M, Lyu Y, Sherwin M, Butch N, Brown C, Graf M, Balents L and Wilson S 2019 Nat. Phys. 15 1058
[25] Ding L, Manuel P, Bachus S, Grußler F, Gegenwart P, Singleton J, Johnson R, Walker H, Adroja D, Hillier A and Tsirlin A 2019 Phys. Rev. B 100 144432
[26] Ranjith K M, Luther S, Reimann T, Schmidt B, Schlender Ph, Sichelschmidt J, Yasuoka H, Strydom A M, Skourski Y, Wosnitza J, Kühne H, Doert Th and Baenitz M 2019 Phys. Rev. B 100 224417
[27] Ranjith K M, Dmytriieva D, Khim S, Sichelschmidt J, Luther S, Ehlers D, Yasuoka H, Wosnitza J, Tsirlin A A, Kühne H and Baenitz M 2019 Phys. Rev. B 99 180401(R)
[28] Li Y S, Liao H J, Zhang Z, Li S Y, Jin F, Ling L S, Zhang L, Zou Y M, Pi L, Yang Z R, Wang J F, Wu Z H and Zhang Q H 2015 Sci. Rep. 5 16419
[29] Zhang J L, Zhang S J, Weng H M, Zhang W, Yang L X, Liu Q Q, Feng S M, Wang X C, Yu R C, Cao L Z, Wang L, Yang W G, Liu H Z, Zhao W Y, Zhang S C, Dai X, Fang Z and Jin C Q 2011 Proc. Natl. Acad. Sci. USA 108 24
[30] Zhang S J, Zhang J L, Yu X H, Zhu J, Kong P P, Feng S M, Liu Q Q, Yang L X, Wang X C, Cao L Z, Yang W G, Wang L, Mao H K, Zhao Y S, Liu H Z, Dai X, Fang Z, Zhang S C and Jin C Q 2012 J. Appl. Phys. 111 112630
[31] Kong P P, Sun F, Xing L Y, Zhu J, Zhang S J, Li W M, Liu Q Q, Wang X C, Feng S M, Yu X H, Zhu J L, Yu R C, Yang W G, Shen G Y, Zhao Y S, Ahuja R, Mao H K and Jin C Q 2015 Sci. Rep. 4 6679
[32] Zhu J, Zhang J L, Kong P P, Zhang S J, Yu X H, Zhu J L, Liu Q Q, Li X, Yu R C, Ahuja R, Yang W G, Shen G Y, Mao H K, Weng H M, Dai X, Fang Z, Zhao Y S and Jin C Q 2013 Sci. Rep. 3 2016
[33] He L, Jia Y T, Zhang S J, Hong X, Jin C Q and Li S Y 2016 npj Quantum Mater. 1 16014
[34] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[35] Hammersley A P, Svensson S O, Hanfland M, Fitch A N and Hausermann D 1996 High Press. Res. 14 235
[36] Kondo J 1964 Prog. Theor. Phys. 32 37
[37] Goltsev A and Abd-Elmeguid M 2005 J. Phys.: Condens. Matter 17 813
[38] Barreda-Argüeso J A, Nataf L, Aguado F, Hernández I, González J, Otero-de-la-Roza A, Luaña V, Jia Y T, Jin C Q, Kim B J, Kim K, Min B I, Heribert W, Jephcoat A P and Rodríguez F 2019 Sci. Rep. 9 5548
[39] Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L and Uwatoko Y 2015 Phys. Rev. Lett. 114 117001
[40] Custers J, Gegenwart P, Wilhelm H, Neumaler K, Toklwa Y, Trovarelli O, Geibel G, Steglich F, Pepin C and Coleman P 2003 Nature 424 524
[41] Mathur N, Grosche F, Julian S, Walker I, Freye D, Haselwimmer R and Lonzarich G 1998 Nature 394 39
[42] Stewart G R 2001 Rev. Mod. Phys. 73 797
[43] Kyung B and Tremblay A 2006 Phys. Rev. Lett. 97 046402
[44] Zhang Z, Yin Y, Ma X, Liu W, Li J, Jin F, Ji J, Wang Y, Wang X, Yu X and Zhang Q 2020 arXiv:2003.11479 [cond-mat.supr-con]
[45] Pfleiderer C 2009 Rev. Mod. Phys. 81 1551
[46] Steglich F and Wirth S 2016 Rep. Prog. Phys. 79 084502
[47] Laubach M, Thomale R, Platt C, Hanke W and Li G 2015 Phys. Rev. B 91 245125
[48] Kiesel M L, Platt C, Hanke W and Thomale R 2013 Phys. Rev. Lett. 111 097001
Related articles from Frontiers Journals
[1] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 097404
[2] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 097404
[3] Yan-Bing Hou, Yin-Shun Wang, Chang-Tao Kan, Xi Yuan, Wei Pi. Analysis of the Self-Protection Characteristics of a 1.5T Bitter-Like HTS Magnet Operated at 65K[J]. Chin. Phys. Lett., 2018, 35(6): 097404
[4] TAHER Ghrib, AMAL Lafy Al-Otaibi, MUNIRAH Abdullah Almessiere, IBTISSEM Ben Assaker, RADHOUANE Chtourou. High Thermoelectric Figure of Merit of Ag8SnS6 Component Prepared by Electrodeposition Technique[J]. Chin. Phys. Lett., 2015, 32(12): 097404
[5] SONG Xiao-Hui, JIN Yi-Rong, FAN Zhen-Jun, MI Zhen-Yu, ZHANG Dian-Lin. Degradation Mechanism of the Superconducting Transition Temperature in Nb Thin Films[J]. Chin. Phys. Lett., 2015, 32(4): 097404
[6] PI Wei, WANG Yin-Shun, DONG Jin, CHEN Lei. AC Alternating-Current Loss Analyses of a Thin High-Temperature Superconducting Tube Carrying AC Transport Current in AC External Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(3): 097404
[7] HE Li, HU Xiang, YIN Lan, XU Xiao-Lin, GUO Jian-Dong, LI Chuan-Yi, YIN Dao-Le. Extended Power Law and Hall Anomaly of High-Temperature Superconductors[J]. Chin. Phys. Lett., 2009, 26(3): 097404
[8] ZHANG Wei, SUN Li-Zhen, LUO Meng-Bo. Simulation of Dynamics in Two-Dimensional Vortex Systems in Random Media[J]. Chin. Phys. Lett., 2009, 26(2): 097404
[9] LI Yu-ke, LIN Xiao, TAO Qian, CHEN Hang, WANG Cao, LI Lin-Jun, LUO Yong-Kang, HE Mi, ZHU Zeng-Wei, CAO Gang-Han, XU Zhu-An. Superconductivity and Transport Properties in Th and F Codoped Sm1-xThxFeAsO1-yFy[J]. Chin. Phys. Lett., 2009, 26(1): 097404
[10] CHEN Xue-Ou, DONG Bing, LEI Xiao-Lin. Thermal Rectification Effect of an Interacting Quantum Dot[J]. Chin. Phys. Lett., 2008, 25(8): 097404
[11] WANG Qing-Bo, XU Xiang-Fan, TAO Qian, WANG Hong-Tao, XU Zhu-An. Metal--Insulator Transition in Ca-Doped Sr14-xCaxCu24O41 Systems Probed by Thermopower Measurements[J]. Chin. Phys. Lett., 2008, 25(5): 097404
[12] YIN Cong, HUANG Lei, HE Fa-Hong, GONG Ma-Li. Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition[J]. Chin. Phys. Lett., 2007, 24(7): 097404
[13] HE Chun-Yuan, GAO Chun-Xiao, LI Ming, HAO Ai-Min, HUANG Xiao-Wei, ZHANG Dong-Mei, YU Cui-Ling, WANG Yue. Electron Transport Property of CdTe under High Pressure and Moderate Temperature by In-Situ Resistivity Measurement in Diamond Anvil Cell[J]. Chin. Phys. Lett., 2007, 24(4): 097404
[14] HU Xiang, HE Li, NING Zhen-Hua, CHEN Kai-Xuan, YIN Lan, LU Guo, XU Xiao-Lin, GUO Jian-Dong, WANG Fu-Ren, LI Chuan-Yi, YIN Dao-Le. Critical Scaling of Extended Power Law I - V Isotherms near Vortex Glass Transition[J]. Chin. Phys. Lett., 2006, 23(12): 097404
[15] HUANG Sheng-Li, RUAN Ke-Qing, TANG Yu, CAO Lie-Zhao, LI Xiao-Guang. Electrical Properties and Raman Spectra of BaBi1-xPbxO3[J]. Chin. Phys. Lett., 2006, 23(5): 097404
Full text