GENERAL |
|
|
|
|
The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator |
Bo-Xing Cao and Fu-Lin Zhang* |
Department of Physics, School of Science, Tianjin University, Tianjin 300072, China |
|
Cite this article: |
Bo-Xing Cao and Fu-Lin Zhang 2020 Chin. Phys. Lett. 37 090303 |
|
|
Abstract We study the analytic structure for the eigenvalues of the one-dimensional Dirac oscillator, by analytically continuing its frequency on the complex plane. A twofold Riemann surface is found, connecting the two states of a pair of particle and antiparticle. One can, at least in principle, accomplish the transition from a positive energy state to its antiparticle state by moving the frequency continuously on the complex plane, without changing the Hamiltonian after transition. This result provides a visual explanation for the absence of a negative energy state with the quantum number $n=0$.
|
|
Received: 12 May 2020
Published: 01 September 2020
|
|
PACS: |
03.65.Pm
|
(Relativistic wave equations)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11675119, 11575125 and 11105097). |
|
|
[1] | Dembowski C, Gräf H D, Heine H L, Heiss W D, Rehfeld H and Richter A 2001 Phys. Rev. Lett. 86 787 |
[2] | Dietz B, Harney H L, Kirillov O N, Miski-Oglu M, Richter A and Schäfer F 2011 Phys. Rev. Lett. 106 150403 |
[3] | Doppler J, Mailybaev A A, Böhm J, Kuhl U, Girschik A, Libisch F, Milburn T J, Rabl P, Moiseyev N and Rotter S 2016 Nature 537 76 |
[4] | Chen W, Özdemir S K, Zhao G, Wiersig J and Yang L 2017 Nature 548 192 |
[5] | Xu H, Mason D, Jiany L and Harris J G E 2016 Nature 537 80 |
[6] | Bender C M, Felski A, Hassanpour N, Klevansky S P and Beygi A 2017 Phys. Scr. 92 015201 |
[7] | Felski A and Kelvansky S P 2018 Phys. Rev. A 98 012127 |
[8] | Bender C M and Turbiner A 1993 Phys. Lett. A 173 442 |
[9] | Moshinsky M and Szczepaniak A 1989 J. Phys. A 22 L817 |
[10] | Sadurní E 2011 AIP Conf. Proc. 1334 249 |
[11] | Dirac P A M 1965 The Principles of Quantum Mechanics (Oxford: Oxford University Press) p 253 |
[12] | Franco-Villafañe J A, Sadurní E, Barkhofen S, Kuhl U, Mortessagne F and Seligman T H 2013 Phys. Rev. Lett. 111 170405 |
[13] | Lange de O L 1991 J. Phys. A 24 667 |
[14] | Benitez J 1990 Phys. Rev. Lett. 64 1643 |
[15] | Quesne C and Moshinsky. M 1990 J. Phys. A 23 2263 |
[16] | Lisboa R, Malheiro M, de Castro A S, Alberto P and Fiolhais M 2004 Phys. Rev. C 69 024319 |
[17] | Zhang F L, Fu B and Chen J L 2009 Phys. Rev. A 80 054102 |
[18] | Grineviciute J and Halderson D 2012 Phys. Rev. C 85 054617 |
[19] | Romera E 2011 Phys. Rev. A 84 052102 |
[20] | Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. A 76 041801 |
[21] | Bermudez A, Martin-Delgado M A and Solano E 2007 Phys. Rev. Lett. 99 123602 |
[22] | Lamata L, León J, Schätz T and Solano E 2007 Phys. Rev. Lett. 98 253005 |
[23] | Torres J M, Sadurní E and Seligman T H 2010 AIP Conf. Proc. 1323 301 |
[24] | Sadurní E, Seligman T H and Mortessagne F 2010 New J. Phys. 12 053014 |
[25] | Szmytkowski R and Gruchowski M 2001 J. Phys. A 34 4991 |
[26] | Greiner W 2000 Relativistic Quantum Mechanics: Wave Equations (Berlin: Springer) p 299 |
[27] | Bender C M, Brody D C and Jones H F 2003 Am. J. Phys. 71 1095 |
[28] | Beygi A and Klevansky S P 2018 Phys. Rev. A 98 022105 |
[29] | Beygi A, Klevansky S P and Bender C M 2019 Phys. Rev. A 99 062117 |
[30] | Berry M V 1984 Proc. R. Soc. London Ser. A 392 45 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|