Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 088502    DOI: 10.1088/0256-307X/37/8/088502
Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures
Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv*, Lei Liao , and Chang-Zhong Jiang 
Key Laboratory for Micro/Nano-Optoelectronic Devices of the Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
Cite this article:   
Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao  et al  2020 Chin. Phys. Lett. 37 088502
Download: PDF(1631KB)   PDF(mobile)(1616KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Van der Waals heterostructures (vdWHs) realized by vertically stacking of different two-dimensional (2D) materials are a promising candidate for tunneling devices because of their atomically clean and lattice mismatch-free interfaces in which different layers are separated by the vdW gaps. The gaps can provide an ideal electric modulation environment on the vdWH band structures and, on the other hand, can also impede the electron tunneling behavior because of large tunneling widths. Here, through first-principles calculations, we find that the electrically modulated tunneling behavior is immune to the interlayer interaction, keeping a direct band-to-band tunneling manner even the vdWHs have been varied to the indirect semiconductor, which means that the tunneling probability can be promoted through the vdW gap shrinking. Using transition metal dichalcogenide heterostructures as examples and normal strains as the gap reducing strategy, a maximum shrinking of 33% is achieved without changing the direct tunneling manner, resulting in a tunneling probability promotion of more than 45 times. Furthermore, the enhanced interlayer interaction by the strains will boost the stability of the vdWHs at the lateral direction, preventing the interlayer displacement effectively. It is expected that our findings provide perspectives in improving the electric behaviors of the vdWH devices.
Received: 27 May 2020      Published: 28 July 2020
PACS:  85.35.Ds (Quantum interference devices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.40.Gk (Tunneling)  
  73.40.-c (Electronic transport in interface structures)  
Fund: Supported by the National Key Research and Development Program of China (Grant Nos. 2018YFB0406603 and 2018YFA0703704), the National Natural Science Foundation of China (Grant Nos. 51991341, 61904052, 61851403 and 61704051), the Key Research and Development Plan of Hunan Province (Grant No. 2018GK2064), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000).
URL:       OR
E-mail this article
E-mail Alert
Articles by authors
Yi-Fan He 
Lei-Xi Wang 
Zhi-Xing Xiao 
Ya-Wei Lv
Lei Liao 
and Chang-Zhong Jiang 
[1] Ionescu A M and Riel H 2011 Nature 479 329
[2] Lv Y, Qin W, Wang C, Liao L and Liu X 2019 Adv. Electron. Mater. 5 1800569
[3] Madan J and Chaujar R 2017 IEEE Trans. Electron Devices 64 1482
[4] Moselund K E, Cutaia D, Schmid H, Borg M, Sant S, Schenk A and Riel H 2016 IEEE Trans. Electron Devices 63 4233
[5] Novoselov K S 2004 Science 306 666
[6] Baringhaus J, Ruan M, Edler F, Tejeda A, Sicot M, Taleb Ibrahimi A, Li A P, Jiang Z, Conrad E H, Berger C, Tegenkamp C and de Heer W A 2014 Nature 506 349
[7] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[8] Denk R, Hohage M, Zeppenfeld P, Cai J, Pignedoli C A, Sode H, Fasel R, Feng X, Mullen K, Wang S, Prezzi D, Ferretti A, Ruini A, Molinari E and Ruffieux P 2014 Nat. Commun. 5 4253
[9] Pereira V M and Castro Neto A H 2009 Phys. Rev. Lett. 103 046801
[10] Liu Y, Xia C J, Zhang B Q, Zhang T T, Cui Y and Hu Z Y 2018 Chin. Phys. Lett. 35 067101
[11] Jiang J, Hu W, Xie D, Yang J, He J, Gao Y and Wan Q 2019 Nanoscale 11 1360
[12] Sahoo P K, Memaran S, Xin Y, Balicas L and Gutierrez H R 2018 Nature 553 63
[13] Mu C, Wei W, Li J, Huang B and Dai Y 2018 Mater. Res. Express 5 046307
[14] Liu X and Hersam M C 2018 Adv. Mater. 30 1801586
[15] Liu Y, Stradins P and Wei S H 2016 Sci. Adv. 2 e1600069
[16] Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Mullen K and Fasel R 2010 Nature 466 470
[17] Lv Y, Huang Q, Chang S, Wang H, He J, Wei C, Liu A, Ye S and Wang W 2019 Phys. Rev. Appl. 11 024026
[18] Liu F, Wang J and Guo H 2016 Nanoscale 8 18180
[19] Liu Y, Huang Y and Duan X 2019 Nature 567 323
[20] Debbichi L, Eriksson O and Lebègue S 2014 Phys. Rev. B 89 205311
[21] Guo Y and Robertson J 2016 Appl. Phys. Lett. 108 233104
[22] Kang J, Tongay S, Zhou J, Li J and Wu J 2013 Appl. Phys. Lett. 102 012111
[23] Gong C, Zhang H, Wang W, Colombo L, Wallace R M and Cho K 2013 Appl. Phys. Lett. 103 053513
[24] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696
[25] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
[26] Sarkar D, Xie X, Liu W, Cao W, Kang J, Gong Y, Kraemer S, Ajayan P M and Banerjee K 2015 Nature 526 91
[27] Burg G W, Prasad N, Fallahazad B, Valsaraj A, Kim K, Taniguchi T, Watanabe K, Wang Q, Kim M J, Register L F and Tutuc E 2017 Nano Lett. 17 3919
[28] Shim J, Oh S, Kang D H, Jo S H, Ali M H, Choi W Y, Heo K, Jeon J, Lee S, Kim M, Song Y J and Park J H 2016 Nat. Commun. 7 13413
[29] Shim J, Kim H S, Shim Y S, Kang D H, Park H Y, Lee J, Jeon J, Jung S J, Song Y J, Jung W S, Lee J, Park S, Kim J, Lee S, Kim Y H and Park J H 2016 Adv. Mater. 28 5293
[30] Zhang J, Wei Y, Yao F, Li D, Ma H, Lei P, Fang H, Xiao X, Lu Z, Yang J, Li J, Jiao L, Hu W, Liu K, Liu K, Liu P, Li Q, Lu W, Fan S and Jiang K 2017 Adv. Mater. 29 1604469
[31] Qiu C, Liu F, Xu L, Deng B, Xiao M, Si J, Lin L, Zhang Z, Wang J, Guo H, Peng H and Peng L M 2018 Science 361 387
[32] Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Dal Corso A, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero de la Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X and Baroni S 2017 J. Phys.: Condens. Matter 29 465901
[33] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502
[34] Conte F, Ninno D and Cantele G 2019 Phys. Rev. B 99 155429
[35] Lv Y, Tong Q, Liu Y, Li L, Chang S, Zhu W, Jiang C and Liao L 2019 Phys. Rev. Appl. 12 044064
[36] Yang L L, Shi J J, Zhang M, Wei Z M, Ding Y M, Wu M, He Y, Cen Y L, Guo W H, Pan S H and Zhu Y H 2019 Chin. Phys. Lett. 36 097301
[37] Zeng J, Cui P and Zhang Z 2017 Phys. Rev. Lett. 118 46101
[38] Lv Y Z, Zhao P and Liu D S 2017 Chin. Phys. Lett. 34 107301
[39] Shi J, Gao Y, Wang X L and Yun S N 2017 Chin. Phys. Lett. 34 087701
[40] Yu W, Zhu Z, Zhang S, Cai X, Wang X, Niu C Y and Zhang W B 2016 Appl. Phys. Lett. 109 103104
[41] Su J, Feng L, Zhang Y and Liu Z 2017 Appl. Phys. Lett. 110 161604
[42] Komsa H P and Krasheninnikov A V 2013 Phys. Rev. B 88 085318
[43] Su J, Feng L, Zhang Y and Liu Z 2016 Phys. Chem. Chem. Phys. 18 16882
[44] Zhou K, Zhang T, Liu B and Yao Y J 2020 Chin. Phys. Lett. 37 017102
[45] Özçelik V O, Azadani J G, Yang C, Koester S J and Low T 2016 Phys. Rev. B 94 035125
[46] Lv Y, Liu Y, Qin W, Chang S, Jiang C, Liu Y and Liao L 2019 IEEE Trans. Electron Devices 66 2365
[47] Tong Q, Chen M and Yao W 2019 Phys. Rev. Appl. 12 024031
[48] Yu W J, Vu Q A, Oh H, Nam H G, Zhou H, Cha S, Kim J Y, Carvalho A, Jeong M, Choi H, Castro Neto A H, Lee Y H and Duan X 2016 Nat. Commun. 7 13278
[49] Tong Q, Yu H, Zhu Q, Wang Y, Xu X and Yao W 2017 Nat. Phys. 13 356
Related articles from Frontiers Journals
[1] Fu-Bin Yang. Hybridization Induced Competitive Scanning Tunneling Interference Process into a Heavy Fermion System[J]. Chin. Phys. Lett., 2018, 35(7): 088502
[2] FU Ying-Chun, WANG Xiao-Feng, FAN Zhong-Chao, YANG Xiang, BAI Yun-Xia, ZHANG Jia-Yong, MA Hui-Li, JI An, YANG Fu-Hua. A Self-Aligned Process to Fabricate a Metal Electrode-Quantum Dot/Nanowire-Metal Electrode Structure with 100% Yield[J]. Chin. Phys. Lett., 2012, 29(9): 088502
[3] HUANG Li, YOU Jian-Qiang, YAN Xiao-Hong, WEI Shi-Hao. Coherent Transport Through a Quantum Dot Embedded in a Double-Slit-Like Aharonov-Bohm Ring[J]. Chin. Phys. Lett., 2002, 19(10): 088502
Full text