Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 087401    DOI: 10.1088/0256-307X/37/8/087401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates
Cheng Zheng1, Dapeng Zhao1,2, Xinqiang Cai1, Wantong Huang1, Fanqi Meng3, Qinghua Zhang3, Lin Tang1, Xiaopeng Hu1, Lin Gu3, Shuai-Hua Ji1,4*, Xi Chen1*
1State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
2Beijing Academy of Quantum Information Sciences, Beijing 100193, China
3Laboratory for Advanced Materials & Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
Cite this article:   
Cheng Zheng, Dapeng Zhao, Xinqiang Cai et al  2020 Chin. Phys. Lett. 37 087401
Download: PDF(1147KB)   PDF(mobile)(1138KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Layered material indium selenide (In$_{x}$Se$_{y}$) is a promising candidate for building next-generation electronic and photonic devices. We report a zirconium aided MBE growth of this van der Waals material. When co-depositing zirconium and selenium onto an indium phosphide substrate with a substrate temperature of 400℃ at a constant zirconium flux rate of 0.01 ML/min, the polymorphic In$_{x}$Se$_{y}$ layer emerges on top of the insulating ZrSe$_{2}$ layer. Different archetypes, such as InSe, $\alpha$-In$_{2}$Se$_{3}$ and $\beta$-In$_{2}$Se$_{3}$, are found in the In$_{x}$Se$_{y}$ layers. A negative magnetoresistance of 40% at 2 K under 9 T magnetic field is observed. Such an In$_{x}$Se$_{y}$/ZrSe$_{2}$ heterostructure with good lattice-matching may serve as a candidate for device applications.
Received: 20 June 2020      Published: 02 July 2020
PACS:  74.70.Xa (Pnictides and chalcogenides)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11874233).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/087401       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/087401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cheng Zheng
Dapeng Zhao
Xinqiang Cai
Wantong Huang
Fanqi Meng
Qinghua Zhang
Lin Tang
Xiaopeng Hu
Lin Gu
Shuai-Hua Ji
Xi Chen
[1] Fiori G, Bonaccorso F, Iannaccone G et al. 2014 Nat. Nanotechnol. 9 768
[2] Marks T J and Hersam M C 2015 Nature 520 631
[3] Franklin A D 2015 Science 349 aab2750
[4] Butler S Z, Hollen S M, Cao L et al. 2013 ACS Nano 7 2898
[5] Zhao M, Ye Y, Han Y et al. 2016 Nat. Nanotechnol. 11 954
[6] Novoselov K S, Geim A K, Morozov S V et al. 2004 Science 306 666
[7] Li L, Yu Y, Ye G J et al. 2014 Nat. Nanotechnol. 9 372
[8] Wang Q H, Kalantar-Zadeh K, Kis A et al. 2012 Nat. Nanotechnol. 7 699
[9] Chhowalla M, Shin H S, Eda G et al. 2013 Nat. Chem. 5 263
[10] Splendiani A, Sun L, Zhang Y et al. 2010 Nano Lett. 10 1271
[11] Radisavljevic B, Radenovic A, Brivio J et al. 2011 Nat. Nanotechnol. 6 147
[12] Li M Y, Shi Y, Cheng C C et al. 2015 Science 349 524
[13] Hu P, Wen Z, Wang L et al. 2012 ACS Nano 6 5988
[14] Late D J, Liu B T, Luo J et al. 2012 Adv. Mater. 24 3549
[15] Lei S, Ge L, Liu Z et al. 2013 Nano Lett. 13 2777
[16] Huang W, Gan L, Li H et al. 2016 CrystEngComm 18 3968
[17] Feng W, Zheng W, Cao W et al. 2014 Adv. Mater. 26 6587
[18] Tamalampudi S R, Lu Y, Kumar U R et al. 2014 Nano Lett. 14 2800
[19] Jacobsgedrim R B, Shanmugam M, Jain N et al. 2014 ACS Nano 8 514
[20] Bandurin D A, Tyurnina A V, Yu G et al. 2017 Nat. Nanotechnol. 12 223
[21] Mudd G W, Svatek S A, Ren T et al. 2013 Adv. Mater. 25 5714
[22] Choi M S, Cheong B, Ra C H et al. 2017 Adv. Mater. 29 1703568
[23] Cui C, Hu W, Yan X et al. 2018 Nano Lett. 18 1253
[24] Poh S M, Tan S J, Wang H et al. 2018 Nano Lett. 18 6340
[25] Kibirev I A, Matetskiy A V, Zotov A V et al. 2018 Appl. Phys. Lett. 112 191602
[26] Si M W, Saha A K, Gao S J et al. 2019 Nat. Electron. 2 580
[27] Popović S, Tonejc A, Gržeta-Plenković B et al. 1979 J. Appl. Crystallogr. 12 416
[28] Manolikas C 1988 J. Solid State Chem. 74 319
[29] Osamura K, Murakami Y and Tomile Y 1966 J. Phys. Soc. Jpn. 21 1848
[30] Miyazawa H and Sugaike S 1957 J. Phys. Soc. Jpn. 12 312
[31] Čelustka B and Bidjin D 1971 Phys. Status Solidi A 6 301
[32] Kupers M, Konze P M, Meledin A et al. 2018 Inorg. Chem. 57 11775
[33] De Blasi C, Micocci G, Mongelli S et al. 1982 J. Cryst. Growth 57 482
[34] Lin M, Wu D, Zhou Y et al. 2013 J. Am. Chem. Soc. 135 13274
[35] Ohtsuka T, Nakanishi K, Okamoto T et al. 2001 Jpn. J. Appl. Phys. 40 509
[36] Emery J Y, Brahimostmane L, Hirlimann C et al. 1992 J. Appl. Phys. 71 3256
[37] Hayashi T, Ueno K, Saiki K et al. 2000 J. Cryst. Growth 219 115
[38] Sanchez-Royo J F, Segura A, Lang O et al. 2001 J. Appl. Phys. 90 2818
[39] Balakrishnan N, Steer E D, Smith E F et al. 2018 2D Mater. 5 035026
[40] Amokrane A, Proix F, Monkad S E et al. 1999 J. Phys.: Condens. Matter 11 4303
[41] Zhou J D, Zeng Q S, Lv D H et al. 2015 Nano Lett. 15 6400
[42] Yang Z B, Jie W J, Mak C H et al. 2017 ACS Nano 11 4225
[43] Zheng W, Xie T, Zhou Y et al. 2015 Nat. Commun. 6 6972
[44] Zhou S, Tao X, Gu Y et al. 2016 J. Phys. Chem. C 120 4753
[45] Okamoto T, Nakada Y, Aoki T et al. 2006 Phys. Status Solidi C 3 2796
[46] Massidda S, Continenza A, Freeman A J et al. 1990 Phys. Rev. B 41 12079
[47] Whitehouse C R and Balchin A A 1978 Phys. Status Solidi A 47 K173
[48] Balluffi R W and Bkakely J M 1975 Thin Solid Films 25 363
[49] Mleczko M J, Zhang C, Lee H R et al. 2017 Sci. Adv. 3 e1700481
[50]Pauw L J 1958 Philips Res. Rep. 13 1
[51] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[52] Dmitriev A I, Kovalyuk Z D, Lazorenko V I et al. 1990 Phys. Status Solidi B 162 213
[53] Romeo N 1974 Phys. Status Solidi A 26 K187
Related articles from Frontiers Journals
[1] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 087401
[2] B. L. Kang, M. Z. Shi, D. Zhao, S. J. Li, J. Li, L. X. Zheng, D. W. Song, L. P. Nie, T. Wu, and X. H. Chen. NMR Evidence for Universal Pseudogap Behavior in Quasi-Two-Dimensional FeSe-Based Superconductors[J]. Chin. Phys. Lett., 2022, 39(12): 087401
[3] Dong Li, Yue Liu, Zouyouwei Lu, Peiling Li, Yuhang Zhang, Sheng Ma, Jiali Liu, Jihu Lu, Hua Zhang, Guangtong Liu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Quasi-Two-Dimensional Nature of High-$T_{\rm c}$ Superconductivity in Iron-Based (Li,Fe)OHFeSe[J]. Chin. Phys. Lett., 2022, 39(12): 087401
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 087401
[5] Jia-Qi Guan, Li Wang, Pengdong Wang, Wei Ren, Shuai Lu, Rong Huang, Fangsen Li, Can-Li Song, Xu-Cun Ma, and Qi-Kun Xue. Honeycomb Lattice in Metal-Rich Chalcogenide Fe$_{2}$Te[J]. Chin. Phys. Lett., 2021, 38(11): 087401
[6] Shaobo Liu, Jie Yuan, Sheng Ma, Zouyouwei Lu, Yuhang Zhang, Mingwei Ma, Hua Zhang, Kui Jin, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Magnetic-Field-Induced Spin Nematicity in FeSe$_{1-x}$S$_{x}$ and FeSe$_{1-y}$Te$_{y}$ Superconductor Systems[J]. Chin. Phys. Lett., 2021, 38(8): 087401
[7] Shuai Liu, Si-Min Nie, Yan-Peng Qi, Yan-Feng Guo, Hong-Tao Yuan, Le-Xian Yang, Yu-Lin Chen, Mei-Xiao Wang, and Zhong-Kai Liu. Measurement of Superconductivity and Edge States in Topological Superconductor Candidate TaSe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 087401
[8] Shaobo Liu, Sheng Ma, Zhaosheng Wang, Wei Hu, Zian Li, Qimei Liang, Hong Wang, Yuhang Zhang, Zouyouwei Lu, Jie Yuan, Kui Jin, Jian-Qi Li, Li Pi, Li Yu, Fang Zhou, Xiaoli Dong, and Zhongxian Zhao. Unusual Normal and Superconducting State Properties Observed in Hydrothermal Fe$_{1-\delta}$Se Flakes[J]. Chin. Phys. Lett., 2021, 38(5): 087401
[9] Mebrouka Boubeche, Jia Yu, Li Chushan, Wang Huichao, Lingyong Zeng, Yiyi He, Xiaopeng Wang, Wanzhen Su, Meng Wang, Dao-Xin Yao, Zhijun Wang, and Huixia Luo. Superconductivity and Charge Density Wave in Iodine-Doped CuIr$_{2}$Te$_{4}$[J]. Chin. Phys. Lett., 2021, 38(3): 087401
[10] Shi-Hang Na, Wei Wu, and Jian-Lin Luo. Anisotropy Properties of Mn$_{2}$P Single Crystals with Antiferromagnetic Transition[J]. Chin. Phys. Lett., 2020, 37(8): 087401
[11] Yu-Ting Shao, Wen-Shan Hong, Shi-Liang Li, Zheng Li, Jian-Lin Luo. $^{19}$F NMR Study of the Bilayer Iron-Based Superconductor KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$[J]. Chin. Phys. Lett., 2019, 36(12): 087401
[12] Hui-Can Mao, Bing-Feng Hu, Yuan-Hua Xia, Xi-Ping Chen, Cao Wang, Zhi-Cheng Wang, Guang-Han Cao, Shi-Liang Li, Hui-Qian Luo. Neutron Powder Diffraction Study on the Non-Superconducting Phases of ThFeAsN$_{1-x}$O$_x$ ($x=0.15, 0.6$) Iron Pnictide[J]. Chin. Phys. Lett., 2019, 36(10): 087401
[13] Hao Ru, Yi-Shi Lin, Yin-Cong Chen, Yang Feng, Yi-Hua Wang. Observation of Two-Level Critical State in the Superconducting FeTe Thin Films$^*$[J]. Chin. Phys. Lett., 2019, 36(7): 087401
[14] Yun Xie, Junsheng Feng, Hongjun Xiang, Xingao Gong. Interplay of Strain and Magnetism in FeSe Monolayers[J]. Chin. Phys. Lett., 2019, 36(5): 087401
[15] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 087401
Viewed
Full text


Abstract