CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Zirconium Aided Epitaxial Growth of In$_{x}$Se$_{y}$ on InP(111) Substrates |
Cheng Zheng1, Dapeng Zhao1,2, Xinqiang Cai1, Wantong Huang1, Fanqi Meng3, Qinghua Zhang3, Lin Tang1, Xiaopeng Hu1, Lin Gu3, Shuai-Hua Ji1,4*, Xi Chen1* |
1State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China 2Beijing Academy of Quantum Information Sciences, Beijing 100193, China 3Laboratory for Advanced Materials & Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
|
|
Cite this article: |
Cheng Zheng, Dapeng Zhao, Xinqiang Cai et al 2020 Chin. Phys. Lett. 37 087401 |
|
|
Abstract Layered material indium selenide (In$_{x}$Se$_{y}$) is a promising candidate for building next-generation electronic and photonic devices. We report a zirconium aided MBE growth of this van der Waals material. When co-depositing zirconium and selenium onto an indium phosphide substrate with a substrate temperature of 400℃ at a constant zirconium flux rate of 0.01 ML/min, the polymorphic In$_{x}$Se$_{y}$ layer emerges on top of the insulating ZrSe$_{2}$ layer. Different archetypes, such as InSe, $\alpha$-In$_{2}$Se$_{3}$ and $\beta$-In$_{2}$Se$_{3}$, are found in the In$_{x}$Se$_{y}$ layers. A negative magnetoresistance of 40% at 2 K under 9 T magnetic field is observed. Such an In$_{x}$Se$_{y}$/ZrSe$_{2}$ heterostructure with good lattice-matching may serve as a candidate for device applications.
|
|
Received: 20 June 2020
Published: 02 July 2020
|
|
PACS: |
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11874233). |
|
|
[1] | Fiori G, Bonaccorso F, Iannaccone G et al. 2014 Nat. Nanotechnol. 9 768 |
[2] | Marks T J and Hersam M C 2015 Nature 520 631 |
[3] | Franklin A D 2015 Science 349 aab2750 |
[4] | Butler S Z, Hollen S M, Cao L et al. 2013 ACS Nano 7 2898 |
[5] | Zhao M, Ye Y, Han Y et al. 2016 Nat. Nanotechnol. 11 954 |
[6] | Novoselov K S, Geim A K, Morozov S V et al. 2004 Science 306 666 |
[7] | Li L, Yu Y, Ye G J et al. 2014 Nat. Nanotechnol. 9 372 |
[8] | Wang Q H, Kalantar-Zadeh K, Kis A et al. 2012 Nat. Nanotechnol. 7 699 |
[9] | Chhowalla M, Shin H S, Eda G et al. 2013 Nat. Chem. 5 263 |
[10] | Splendiani A, Sun L, Zhang Y et al. 2010 Nano Lett. 10 1271 |
[11] | Radisavljevic B, Radenovic A, Brivio J et al. 2011 Nat. Nanotechnol. 6 147 |
[12] | Li M Y, Shi Y, Cheng C C et al. 2015 Science 349 524 |
[13] | Hu P, Wen Z, Wang L et al. 2012 ACS Nano 6 5988 |
[14] | Late D J, Liu B T, Luo J et al. 2012 Adv. Mater. 24 3549 |
[15] | Lei S, Ge L, Liu Z et al. 2013 Nano Lett. 13 2777 |
[16] | Huang W, Gan L, Li H et al. 2016 CrystEngComm 18 3968 |
[17] | Feng W, Zheng W, Cao W et al. 2014 Adv. Mater. 26 6587 |
[18] | Tamalampudi S R, Lu Y, Kumar U R et al. 2014 Nano Lett. 14 2800 |
[19] | Jacobsgedrim R B, Shanmugam M, Jain N et al. 2014 ACS Nano 8 514 |
[20] | Bandurin D A, Tyurnina A V, Yu G et al. 2017 Nat. Nanotechnol. 12 223 |
[21] | Mudd G W, Svatek S A, Ren T et al. 2013 Adv. Mater. 25 5714 |
[22] | Choi M S, Cheong B, Ra C H et al. 2017 Adv. Mater. 29 1703568 |
[23] | Cui C, Hu W, Yan X et al. 2018 Nano Lett. 18 1253 |
[24] | Poh S M, Tan S J, Wang H et al. 2018 Nano Lett. 18 6340 |
[25] | Kibirev I A, Matetskiy A V, Zotov A V et al. 2018 Appl. Phys. Lett. 112 191602 |
[26] | Si M W, Saha A K, Gao S J et al. 2019 Nat. Electron. 2 580 |
[27] | Popović S, Tonejc A, Gržeta-Plenković B et al. 1979 J. Appl. Crystallogr. 12 416 |
[28] | Manolikas C 1988 J. Solid State Chem. 74 319 |
[29] | Osamura K, Murakami Y and Tomile Y 1966 J. Phys. Soc. Jpn. 21 1848 |
[30] | Miyazawa H and Sugaike S 1957 J. Phys. Soc. Jpn. 12 312 |
[31] | Čelustka B and Bidjin D 1971 Phys. Status Solidi A 6 301 |
[32] | Kupers M, Konze P M, Meledin A et al. 2018 Inorg. Chem. 57 11775 |
[33] | De Blasi C, Micocci G, Mongelli S et al. 1982 J. Cryst. Growth 57 482 |
[34] | Lin M, Wu D, Zhou Y et al. 2013 J. Am. Chem. Soc. 135 13274 |
[35] | Ohtsuka T, Nakanishi K, Okamoto T et al. 2001 Jpn. J. Appl. Phys. 40 509 |
[36] | Emery J Y, Brahimostmane L, Hirlimann C et al. 1992 J. Appl. Phys. 71 3256 |
[37] | Hayashi T, Ueno K, Saiki K et al. 2000 J. Cryst. Growth 219 115 |
[38] | Sanchez-Royo J F, Segura A, Lang O et al. 2001 J. Appl. Phys. 90 2818 |
[39] | Balakrishnan N, Steer E D, Smith E F et al. 2018 2D Mater. 5 035026 |
[40] | Amokrane A, Proix F, Monkad S E et al. 1999 J. Phys.: Condens. Matter 11 4303 |
[41] | Zhou J D, Zeng Q S, Lv D H et al. 2015 Nano Lett. 15 6400 |
[42] | Yang Z B, Jie W J, Mak C H et al. 2017 ACS Nano 11 4225 |
[43] | Zheng W, Xie T, Zhou Y et al. 2015 Nat. Commun. 6 6972 |
[44] | Zhou S, Tao X, Gu Y et al. 2016 J. Phys. Chem. C 120 4753 |
[45] | Okamoto T, Nakada Y, Aoki T et al. 2006 Phys. Status Solidi C 3 2796 |
[46] | Massidda S, Continenza A, Freeman A J et al. 1990 Phys. Rev. B 41 12079 |
[47] | Whitehouse C R and Balchin A A 1978 Phys. Status Solidi A 47 K173 |
[48] | Balluffi R W and Bkakely J M 1975 Thin Solid Films 25 363 |
[49] | Mleczko M J, Zhang C, Lee H R et al. 2017 Sci. Adv. 3 e1700481 |
[50] | Pauw L J 1958 Philips Res. Rep. 13 1 |
[51] | Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707 |
[52] | Dmitriev A I, Kovalyuk Z D, Lazorenko V I et al. 1990 Phys. Status Solidi B 162 213 |
[53] | Romeo N 1974 Phys. Status Solidi A 26 K187 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|