CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
de Haas–van Alphen Quantum Oscillations in BaSn$_{3}$ Superconductor with Multiple Dirac Fermions |
Gaoning Zhang1†, Xianbiao Shi2,3†, Xiaolei Liu1†, Wei Xia1, Hao Su1, Leiming Chen4, Xia Wang1,5, Na Yu1,5, Zhiqiang Zou1,5, Weiwei Zhao2,3*, and Yanfeng Guo1,6* |
1School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 2State Key Laboratory of Advanced Welding & Joining and Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China 3Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, China 4School of Materials Science and Engineering, Henan Key Laboratory of Aeronautic Materials and Application Technology, Zhengzhou University of Aeronautics, Zhengzhou 450046, China 5Analytical Instrumentation Center, School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China 6CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai 200050, China
|
|
Cite this article: |
Gaoning Zhang, Xianbiao Shi, Xiaolei Liu et al 2020 Chin. Phys. Lett. 37 087101 |
|
|
Abstract Characterization of Fermi surface of the BaSn$_{3}$ superconductor ($T_{\rm c} \sim 4.4$ K) by de Haas–van Alphen (dHvA) effect measurement reveals its non-trivial topological properties. Analysis of non-zero Berry phase is supported by the ab initio calculations, which reveals a type-II Dirac point setting and tilting along the high symmetric $K$–$H$ line of the Brillouin zone, about 0.13 eV above the Fermi level, and other two type-I Dirac points on the high symmetric $\varGamma$–$A$ direction, but slightly far below the Fermi level. The results demonstrate BaSn$_{3}$ as an excellent example hosting multiple Dirac fermions and an outstanding platform for studying the interplay between nontrivial topological states and superconductivity.
|
|
Received: 26 May 2020
Published: 28 July 2020
|
|
PACS: |
71.18.+y
|
(Fermi surface: calculations and measurements; effective mass, g factor)
|
|
74.70.Ad
|
(Metals; alloys and binary compounds)
|
|
72.20.My
|
(Galvanomagnetic and other magnetotransport effects)
|
|
74.25.-q
|
(Properties of superconductors)
|
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11874264), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA18000000), the Starting Grant of ShanghaiTech University, the Shenzhen Peacock Team Plan (Grant No. KQTD20170809110344233), the Bureau of Industry and Information Technology of Shenzhen through the Graphene Manufacturing Innovation Center (Grant No. 201901161514), the Key Scientific Research Projects of Higher Institutions in Henan Province (19A140018), and Analytical Instrumentation Center, SPST, ShanghaiTech University (Grant No. SPST-AIC10112914). |
|
|
[1] | Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405 |
[2] | Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 |
[3] | Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864 |
[4] | Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013 |
[5] | Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 |
[6] | Yang L X, Liu Z K, Sun Y, Peng H, Yang H F, Zhang T, Zhou B, Zhang Y, Guo Y F, Rahn M, Prabhakaran D, Hussain Z, Mo S K, Felser C, Yan B and Chen Y L 2015 Nat. Phys. 11 728 |
[7] | Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613 |
[8] | Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 |
[9] | Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001 |
[10] | Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H and Shin S 2018 Science 360 182 |
[11] | Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333 |
[12] | Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056 |
[13] | Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037 |
[14] | Tang P, Zhou Q and Zhang S C 2017 Phys. Rev. Lett. 119 206402 |
[15] | Chang G, Xu S Y, Wieder B J, Sanchez D S, Huang S M, Belopolski I, Chang T R, Zhang S, Bansil A, Lin H and Hasan M Z 2017 Phys. Rev. Lett. 119 206401 |
[16] | Rao Z, Li H, Zhang T, Tian S, Li C, Fu B, Tang C, Wang L, Li Z, Fan W, Li J, Huang Y, Liu Z, Long Y, Fang C, Weng H, Shi Y, Lei H, Sun Y, Qian T and Ding H 2019 Nature 567 496 |
[17] | Wilczek F 2009 Nat. Phys. 5 614 |
[18] | Stern A 2010 Nature 464 187 |
[19] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[20] | Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003 |
[21] | Luo X, Shao D F, Pei Q L, Song J Y, Hu L, Han Y Y, Zhu X B, Song W H, Lu W J and Sun Y P 2015 J. Mater. Chem. C 3 11432 |
[22] | Zhu Y L, Hu J, Womack F N, Graf D, Wang Y, Adams P W and Mao Z Q 2019 J. Phys.: Condens. Matter 31 245703 |
[23] | Fässler T F and Kronseder C 1997 Angew. Chem. Int. Ed. Engl. 36 2683 |
[24] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[25] | Lehtomäki J, Makkonen I, Caro M A, Harju A and Lopez-Acevedo O 2014 J. Chem. Phys. 141 234102 |
[26] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[27] | Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 |
[28] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[29] | Kresse G and Hafner J 1993 Phys. Rev. B 47 558 |
[30] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[31] | Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 |
[32] | Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109 |
[33] | Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 |
[34] | Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 |
[35] | Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147 |
[36] | Hu J, Tang Z, Liu J, Liu X, Zhu Y, Graf D, Myhro K, Tran S, Lau C N, Wei J and Mao Z 2016 Phys. Rev. Lett. 117 016602 |
[37] | Clark O J, Neat M J, Okawa K, Bawden L, Marković I, Mazzola F, Feng J, Sunko V, Riley J M, Meevasana W, Fujii J, Vobornik I, Kim T K, Hoesch M, Sasagawa T, Wahl P, Bahramy M S and King P D C 2018 Phys. Rev. Lett. 120 156401 |
[38] | Yang H, Schmidt M, Süss V, Chan M, Balakirev F F, McDonald R D, Parkin S S P, Felser C, Yan B and Moll P J W 2018 New J. Phys. 20 043008 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|