GENERAL |
|
|
|
|
Characterization of Scanning SQUID Probes Based on 3D Nano-Bridge Junctions in Magnetic Field |
Yin-Ping Pan1,2, Yue Wang1,3, Ruo-Ting Yang1,3, Yan Tang1, Xiao-Yu Liu1, Hua Jin1, Lin-Xian Ma1, Yi-Shi Lin2, Zhen Wang1,3, Jie Ren1,3*, Yi-Hua Wang2,4*, and Lei Chen1,3* |
1Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 2Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, China 3University of Chinese Academy of Sciences, Beijing 100049, China 4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
|
|
Cite this article: |
Yin-Ping Pan, Yue Wang, Ruo-Ting Yang et al 2020 Chin. Phys. Lett. 37 080702 |
|
|
Abstract We develop superconducting quantum interference device (SQUID) probes based on 3D nano-bridge junctions for the scanning SQUID microscopy. The use of these nano-bridge junctions enables imaging in the presence of a high magnetic field. Conventionally, a superconducting ground layer has been employed for better magnetic shielding. In our study, we prepare a number of scanning SQUID probes with and without a ground layer to evaluate their performance in external magnetic fields. The devices show the improved magnetic modulation up to 1.4 T. It is found that the ground layer reduces the inductance, and increases the modulation depth and symmetricity of the gradiometer design in the absence of the field. However, the layer is not compatible with the use of the scanning SQUID probe in the field because it decreases its working field range. Moreover, by adding the layer, the mutual inductance between the feedback coil and the SQUID also decreases linearly as a function of the field.
|
|
Received: 20 March 2020
Published: 28 July 2020
|
|
PACS: |
07.79.-v
|
(Scanning probe microscopes and components)
|
|
85.25.-j
|
(Superconducting devices)
|
|
|
Fund: Supported by the National Key R&D Program of China (Grant Nos. 2017YFF0206105, 2016YFA0301002 and 2017YFA0303000), the Young Investigator Program of CAS (Grant No. 2016217), the Frontier Science Key Programs of the CAS (Grant No. QYZDY-SSW-JSC033), and the Strategic Priority Research Program of CAS (Grant No. XDA18000000), the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and the National Natural Science Foundation of China (Grant No. 11827805). |
|
|
[1] | Kirtley J R and Wikswo J P 1999 Annu. Rev. Mater. Sci. 29 117 |
[2] | Okayasu S, Nishio T, Ono M, Tanaka Y and Iyo A 2006 Physica C 437 239 |
[3] | Shperber Y, Vardi N, Persky E, Huber M E and Kalisky B 2019 Rev. Sci. Instrum. 90 053702 |
[4] | Cui Z, Kirtley J R, Wang Y, Kratz P A, Rosenberg A J, Watson C A, Ketchen M B and Moler A 2017 Rev. Sci. Instrum. 88 083703 |
[5] | Foroughi F, Mol J M, Müller T, Moler K A and Bluhm H 2018 Appl. Phys. Lett. 112 252601 |
[6] | Finkler A 2012 Scanning SQUID Microscope for Studying Vortex Matter in Type-II Superconductors (Berlin: Springer) |
[7] | Kirtley J R 2010 Rep. Prog. Phys. 73 126501 |
[8] | Vasyukov D, Ceccarelli L, Wyss M, Gross B, Schwarb A, Mehlin A, Rossi N, Tütüncüoglu G, Heimbach F, Zamani R R, Kovács A, Grundler D and Poggio M 2018 Nano Lett. 18 964 |
[9] | Halbertal D, Cuppens J, Shalom M B, Embon L, Shadmi N, Anahory Y, Naren H R, Sarkar J, Uri A, Ronen Y, Myasoedov Y, Levitov L S, Geim A K and Zeldov E 2016 Nature 539 407 |
[10] | Christensen D V, Frenkel Y, Chen Y Z, Xie Y W, Chen Z Y, Hikita Y, Smith A, Klein L, Pryds N and Kalisky B 2019 Nat. Phys. 15 269 |
[11] | Du J, Liu X, Qin H, Wei Z, Liu Q and Song T 2018 Physica C 547 1 |
[12] | Marguerite A, Birkbeck J, Aharon-Steinberg A, Halbertal D, Bagani K, Marcus I, Myasoedov Y, Perello D J and Zeldov E 2019 Nature 575 628 |
[13] | Uri A, Kim Y, Bagani K, Lewandowski C K, Grover S, Auerbach N, Lachman E O, Myasoedov Y, Taniguchi T, Smet J and Zeldov E 2019 Nat. Phys. 16 164 |
[14] | Chen L, Wang H, Wu L and Wang Z 2016 Nano Lett. 16 7726 |
[15] | Mizugaki Y, Yanagisawa K, Onomi T, Yamashita T, Yamamori H and Shoji A 1999 Jpn. J. Appl. Phys. 38 5869 |
[16] | Mizugaki Y, Kashiwa R, Usami K and Kobayashi T 2007 J. Appl. Phys. 101 114509 |
[17] | Pan Y P, Wang S Y, Liu X Y, Lin Y S, Ma L X, Feng Y, Chen L and Wang Y H 2019 Nanotechnology 30 305303 |
[18] | Koshnick N C, Huber M E, Bert J A, Hicks C W, Edwards H and Moler K A 2008 Appl. Phys. Lett. 93 243101 |
[19] | Fourie C J, Kunert J and Meyer H G 2013 IEEE Trans. Appl. Supercond. 23 1300705 |
[20] | Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Kaxiras E and Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804 |
[21] | Wang H, Yang R, Li G, Wu L, Liu X, Ren J and Wang Z 2018 Supercond. Sci. Technol. 31 055015 |
[22] | Granata C and Vettoliere A 2016 Phys. Rep. 614 1 |
[23] | Clem J R and Yang W 2011 Nanotechnology 22 455501 |
[24] | Bagani K, Sarkar J, Uri A, Rappaport M L, Zeldov E and Myasoedov Y 2019 Phys. Rev. Appl. 12 044062 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|