Chin. Phys. Lett.  2020, Vol. 37 Issue (8): 080501    DOI: 10.1088/0256-307X/37/8/080501
GENERAL |
Machine Learning for Many-Body Localization Transition
Wen-Jia Rao*
School of Science, Hangzhou Dianzi University, Hangzhou 310027, China
Cite this article:   
Wen-Jia Rao 2020 Chin. Phys. Lett. 37 080501
Download: PDF(770KB)   PDF(mobile)(752KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We employ the methods of machine learning to study the many-body localization (MBL) transition in a 1D random spin system. By using the raw energy spectrum without pre-processing as training data, it is shown that the MBL transition point is correctly predicted by the machine. The structure of the neural network reveals the nature of this dynamical phase transition that involves all energy levels, while the bandwidth of the spectrum and nearest level spacing are the two dominant patterns and the latter stands out to classify phases. We further use a comparative unsupervised learning method, i.e., principal component analysis, to confirm these results.
Received: 10 May 2020      Published: 28 July 2020
PACS:  05.30.Rt (Quantum phase transitions)  
  75.10.Pq (Spin chain models)  
  89.20.Ff (Computer science and technology)  
  05.70.Jk (Critical point phenomena)  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11904069 and 11847005).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/8/080501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I8/080501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Jia Rao
[1] Gornyi I V, Mirlin A D and Polyakov D G 2005 Phys. Rev. Lett. 95 206603
Gornyi I V, Mirlin A D and Polyakov D G 2005 Phys. Rev. Lett. 95 046404
[2] Basko D M, Aleiner I L and Altshuler B L 2006 Ann. Phys. 321 1126
[3] Bardarson J H, Pollmann F and Moore J E 2012 Phys. Rev. Lett. 109 017202
[4] Kjall J A, Bardarson J H and Pollmann F 2014 Phys. Rev. Lett. 113 107204
[5] Geraedts S D, Nandkishore R and Regnault N 2016 Phys. Rev. B 93 174202
[6] Geraedts S D, Regnault N and Nandkishore R M 2017 New J. Phys. 19 113021
[7] Yu X, Luitz D J and Clark B K 2016 Phys. Rev. B 94 184202
[8] Yang Z C, Chamon C, Hamma A and Mucciolo E R 2015 Phys. Rev. Lett. 115 267206
[9] Serbyn M, Michailidis A A, Abanin M A and Papic Z 2016 Phys. Rev. Lett. 117 160601
[10] Gray J, Bose S and Bayat A 2018 Phys. Rev. B 97 201105
[11] Li X, Ganeshan S, Pixley J H and Das Sarma S 2015 Phys. Rev. Lett. 115 186601
[12] Serbyn M, Papic Z and Abanin D A 2015 Phys. Rev. X 5 041047
[13] Doggen E V H, Schindler F, Tikhonov K S, Mirlin A D, Neupert T, Polyakov D G and Gornyi I V 2018 Phys. Rev. B 98 174202
[14]Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (Cambridge: MIT Press)
[15] Tanaka A and Tomiya A 2017 J. Phys. Soc. Jpn. 86 063001
[16] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431
[17] Torlai G and Melko R G 2016 Phys. Rev. B 94 165134
[18] Zhang Y and Kim E A 2017 Phys. Rev. Lett. 118 216401
[19] Zhang Y, Melko R G and Kim E A 2017 Phys. Rev. B 96 245119
[20] Wang L 2016 Phys. Rev. B 94 195105
[21] Ch'ng K, Carrasquilla J, Melko R G and Khatami E 2017 Phys. Rev. X 7 031038
[22]Morningstar A and Melko R G 2018 J. Mach. Learn. Res. 18 5975
[23] Ponte P and Melko R G 2017 Phys. Rev. B 96 205146
[24] Li C D, Tan D R and Jiang F J 2018 Ann. Phys. 391 312
[25] Ohtsuki T and Ohtsuki T 2016 J. Phys. Soc. Jpn. 85 123706
Ohtsuki T and Ohtsuki T 2017 J. Phys. Soc. Jpn. 86 044708
[26] Hu W, Singh R R P and Scalettar R T 2017 Phys. Rev. E 95 062122
[27] Liu Y H and van Nieuwenburg E P L 2018 Phys. Rev. Lett. 120 176401
[28] Rao W J, Li Z, Zhu Q, Luo M and Wan X 2018 Phys. Rev. B 97 094207
[29] Li Z, Luo M and Wan X 2019 Phys. Rev. B 99 075418
[30] Khatami E, Guardado-Sanchez E, Spar B M, Carrasquilla J F, Bakr W S and Scalettar R T 2020 arXiv:2002.12310 [cond-mat.str-el]
[31] Liu J, Qi Y, Meng Z Y and Fu L 2017 Phys. Rev. B 95 041101
[32] Liu J, Shen H, Qi Y, Meng Z Y and Fu L 2017 Phys. Rev. B 95 241104
[33] Xu X Y, Qi Y, Liu J, Fu L and Meng Z Y 2017 Phys. Rev. B 96 041119(R)
[34] van Nieuwenburg E P L, Liu Y H and Huber S D 2017 Nat. Phys. 13 435
[35] van Nieuwenburg E, Bairey E and Refael G 2018 Phys. Rev. B 98 060301
[36] Schindler F, Regnault N and Neupert T 2017 Phys. Rev. B 95 245134
[37] Venderley J, Khemani V and Kim E A 2018 Phys. Rev. Lett. 120 257204
[38] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[39] Wigner E P 1951 Ann. Phys. (N.Y.) 53 36
Wigner E P 1955 Ann. Phys. (N.Y.) 62 548
Wigner E P 1958 Ann. Phys. (N.Y.) 67 325
[40] Dyson F J 1962 J. Math. Phys. 3 140
[41] Pal A and Huse D A 2010 Phys. Rev. B 82 174411
[42] Johri S, Nandkishore R and Bhatt R N 2015 Phys. Rev. Lett. 114 117401
[43] Luitz D J, Laflorencie N and Alet F 2015 Phys. Rev. B 91 081103(R)
[44] Regnault N and Nandkishore R 2016 Phys. Rev. B 93 104203
[45] Rao W J 2018 J. Phys.: Condens. Matter 30 395902
[46]Haake F 2001 Quantum Signatures of Chaos (Berlin: Springer)
[47] Kudo K and Deguchi T 2004 Phys. Rev. B 69 132404
[48] Gomez J M G, Molina R A, Relano A and Retamosa J 2002 Phys. Rev. E 66 036209
[49] Avishai Y, Richert J and Berkovits R 2002 Phys. Rev. B 66 052416
[50] Kausar R, Rao W J and Wan X 2020 arXiv:2005.00721 [cond-mat.dis-nn]
[51] Dyson F J 1962 J. Math. Phys. 3 1191
[52] Serbyn M and Moore J E 2016 Phys. Rev. B 93 041424(R)
[53] Huse D A, Nandkishore R, Oganesyan V, Pal A and Sondhi S L 2013 Phys. Rev. B 88 014206
[54] Lazarides A, Das A and Moessner R 2015 Phys. Rev. Lett. 115 030402
[55] Khemani V, Lazarides A, Moessner R and Sondhi S L 2016 Phys. Rev. Lett. 116 250401
[56] Yao N Y, Potter A C, Potirniche I D and Vishwanath A 2017 Phys. Rev. Lett. 118 030401
[57] Su W, Chen M N, Shao L B, Sheng L and Xing D Y 2016 Phys. Rev. B 94 075145
[58] Carleo G and Troyer M 2017 Science 355 602
[59] Deng D L, Li X and Das Sarma S 2017 Phys. Rev. B 96 195145
[60] Huang Y and Moore J E 2017 arXiv:1701.06246 [cond-mat.dis-nn]
[61] Chen J, Cheng S, Xie H, Wang L and Xiang T 2018 Phys. Rev. B 97 085104
[62] Deng D L, Li X and Das Sarma S 2017 Phys. Rev. X 7 021021
[63] Levine Y, Yakira D, Cohen N and Shashua A 2017 arXiv:1704.01552 [cs.LG]
Related articles from Frontiers Journals
[1] Yun-Tong Yang and Hong-Gang Luo. Characterizing Superradiant Phase of the Quantum Rabi Model[J]. Chin. Phys. Lett., 2023, 40(2): 080501
[2] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 080501
[3] Hui Zhou, Zhao-Kai Li, Heng-Yan Wang, Hong-Wei Chen, Xin-Hua Peng, Jiang-Feng Du. Experimental Observation of the Ground-State Geometric Phase of Three-Spin $XY$ Model[J]. Chin. Phys. Lett., 2016, 33(06): 080501
[4] WANG Bo, HUANG Hai-Lin, SUN Zhao-Yu, KOU Su-Peng. Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System[J]. Chin. Phys. Lett., 2012, 29(12): 080501
Viewed
Full text


Abstract