Chin. Phys. Lett.  2020, Vol. 37 Issue (7): 075201    DOI: 10.1088/0256-307X/37/7/075201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Interface Width Effect on the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry
Yun-Peng Yang1,2, Jing Zhang3, Zhi-Yuan Li3, Li-Feng Wang2,3, Jun-Feng Wu3, Wun-Hua Ye2,3*, and Xian-Tu He2,3
1School of Physics, Peking University, Beijing 100871, China
2Center for Applied Physics and Technology, HEDPS, and College of Engineering, Peking University, Beijing 100871, China
3Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
Cite this article:   
Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li et al  2020 Chin. Phys. Lett. 37 075201
Download: PDF(1243KB)   PDF(mobile)(1244KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Interface width effect on the spherical Rayleigh–Taylor instability in the weakly nonlinear regime is studied by numerical simulations. For Legendre perturbation mode $P_n$ with wave number $k_n$ and interface half-width $L$, the commonly adopted empirical linear growth rate formula $\gamma_n^{\rm em}(L)=\gamma_n/\sqrt{1+k_nL}$ is found to be sufficient in spherical geometry. At the weakly nonlinear stage, the interface width affects the mode coupling processes. The development of the mode $P_{2n}$ is substantially influenced by the interface width. Moreover, the nonlinear saturation amplitude increases with the interface width.
Received: 17 February 2020      Published: 21 June 2020
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Supported by the National Natural Science Foundation of China (Grant Nos. 11575033, 11675026, and 11975053).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/7/075201       OR      https://cpl.iphy.ac.cn/Y2020/V37/I7/075201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yun-Peng Yang
Jing Zhang
Zhi-Yuan Li
Li-Feng Wang
Jun-Feng Wu
Wun-Hua Ye
and Xian-Tu He
Related articles from Frontiers Journals
[1] Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry[J]. Chin. Phys. Lett., 2020, 37(5): 075201
[2] Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye. Phase Effects of Long-Wavelength Rayleigh–Taylor Instability on the Thin Shell[J]. Chin. Phys. Lett., 2020, 37(2): 075201
[3] Huan Zheng, Qian Chen, Baoqing Meng, Junsheng Zeng, Baolin Tian. On the Nonlinear Growth of Multiphase Richtmyer–Meshkov Instability in Dilute Gas-Particles Flow[J]. Chin. Phys. Lett., 2020, 37(1): 075201
[4] Meng Li, Wen-Hua Ye. Successive Picket Drive for Mitigating the Ablative Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2019, 36(2): 075201
[5] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Cylindrically Convergent Geometry[J]. Chin. Phys. Lett., 2018, 35(5): 075201
[6] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Linear Growth of Rayleigh–Taylor Instability of Two Finite-Thickness Fluid Layers[J]. Chin. Phys. Lett., 2017, 34(7): 075201
[7] Hong-Yu Guo, Li-Feng Wang, Wen-Hua Ye, Jun-Feng Wu, Wei-Yan Zhang. Weakly Nonlinear Rayleigh–Taylor Instability in Incompressible Fluids with Surface Tension[J]. Chin. Phys. Lett., 2017, 34(4): 075201
[8] XU Teng, XU Li-Xin, WANG An-Ting, GU Chun, WANG Sheng-Bo, LIU Jing, WEI An-Kun. Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion[J]. Chin. Phys. Lett., 2014, 31(09): 075201
[9] GUO Hong-Yu, YU Xiao-Jin, WANG Li-Feng, YE Wen-Hua, WU Jun-Feng, LI Ying-Jun. On the Second Harmonic Generation through Bell–Plesset Effects in Cylindrical Geometry[J]. Chin. Phys. Lett., 2014, 31(04): 075201
[10] WANG Li-Feng, WU Jun-Feng, YE Wen-Hua, FAN Zheng-Feng, HE Xian-Tu. Design of an Indirect-Drive Pulse Shape for ~1.6 MJ Inertial Confinement Fusion Ignition Capsules[J]. Chin. Phys. Lett., 2014, 31(04): 075201
[11] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 075201
[12] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 075201
[13] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 075201
[14] WANG Li-Feng, YE Wen-Hua, , FAN Zheng-Feng, XUE Chuang, LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids[J]. Chin. Phys. Lett., 2009, 26(7): 075201
Viewed
Full text


Abstract