CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers |
Yang Jiang1, Ze-Yu Wan2, Guang-Nan Zhou1, Meng-Ya Fan1, Gai-Ying Yang1,5, R. Sokolovskij1, Guang-Rui Xia1,2, Qing Wang1,3,6**, Hong-Yu Yu1,4,6** |
1School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China 2Department of Materials Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 3Dongguan Institute of Opto-Electronics Peking University, Dongguan 523808, China 4Engineering Research Center of Integrated Circuits for Next-Generation Communications (Ministry of Education), Shenzhen 518055, China 5School of Innovation & Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China 6Shenzhen Institute of the Third Generation Semiconductor, Shenzhen 518100, China
|
|
Cite this article: |
Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou et al 2020 Chin. Phys. Lett. 37 068503 |
|
|
Abstract A novel O$_{2}$ plasma-based digital etching technology for p-GaN/AlGaN structures without any etch-stop layer was investigated using an inductively coupled plasma (ICP) etcher, with 100 W ICP power and 40 W rf bias power. Under 40 sccm O$_{2}$ flow and 3 min oxidation time, the p-GaN etch depth was 3.62 nm per circle. The surface roughness improved from 0.499 to 0.452 nm after digital etching, meaning that no observable damages were caused by this process. Compared to the dry etch only methods with Cl$_{2}$/Ar/O$_{2}$ or BCl$_{3}$/SF$_{6}$ plasma, this technique smoothed the surface and could efficiently control the etch depth due to its self-limiting characteristic. Furthermore, compared to other digital etching processes with an etch-stop layer, this approach was performed using ICP etcher and less demanding on the epitaxial growth. It was proved to be effective in precisely controlling p-GaN etch depth and surface damages required for high performance p-GaN gate high electron mobility transistors.
|
|
Received: 07 March 2020
Published: 26 May 2020
|
|
PACS: |
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
68.37.Lp
|
(Transmission electron microscopy (TEM))
|
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
|
Fund: *Supported by the Guangdong Science and Technology Department (Grant Nos. 2019B010128001 and 2019B010142001), the Shenzhen Municipal Council of Science and Innovation (Grant Nos. JCYJ20180305180619573 and JCYJ20170412153356899), and the National Natural Science Foundation of China (Grant No. 61704004). |
|
|
[1] | Yusuke K, Keisuke U, Taketomo S, Tamotsu H et al 2017 J. Appl. Phys. 121 184501 |
[2] | Chen K, Zhou C et al 2011 Phys. Status Solidi A 208 434 |
[3] | Chen C, Keller S, Haberer E, Zhang L, Hu S E, Mishra U, Wu Y et al 1999 J. Vac. Sci. & Technol. B 17 2755 |
[4] | Buttari D et al 2003 Appl. Phys. Lett. 83 4779 |
[5] | Oka T et al 2008 IEEE Electron Device Lett. 29 668 |
[6] | Wang Y H et al 2015 IEEE Electron Device Lett. 36 381 |
[7] | Baharin A et al 2010 Conference on Optoelectronic and Microelectronic Materials and Devices (Canberra, ACT, Australia 12–15 December 2010) p 145 |
[8] | Chen K J et al 2017 IEEE Trans. Electron Devices 64 779 |
[9] | Ge M, Cai Q, Zhang B H et al 2019 Chin. Phys. B 28 107301 |
[10] | Basu A, Kumar V, Adesida I et al 2007 J. Vac. Sci. & Technol. B 25 2607 |
[11] | Yi C W, Wang R N, Huang W et al 2007 IEEE International Electron Devices Meeting (Washington DC, USA 10–12 December 2007) p 389 |
[12] | Lv L, Gong X, Hao Y et al 2008 Acta Phys. Sin. 57 1128 (in Chinese) |
[13] | Chiu H C et al 2018 IEEE Trans. Electron Devices 65 4820 |
[14] | Hahn H, Lükens G, Ketteniss N et al 2011 Appl. Phys. Express 4 114102 |
[15] | Zhou Y, Zhong Y Z, Gao H W et al 2017 IEEE J. Electron Devices Soc. 5 340 |
[16] | Buttari D, Chini A, Chakraborty A, Mishra U K et al 2004 Int. J. High Speed Electron. Syst. 14 756 |
[17] | Buttari D, Heikman S, Keller S et al 2002 IEEE Lester Eastman Conference on High Performance Devices (Newark, DE, USA 6–8 August 2002) p 461 |
[18] | Burnham S, Boutros K, Hashimoto P, Butler C, Wong D, Hu M, Micovic M et al 2010 Phys. Status Solidi C 7 2010 |
[19] | Chiu H C, Yang C W, Chen C H, Fu J S, Chen F T et al 2011 Appl. Phys. Lett. 99 153508 |
[20] | Sokolovskij R, Sun J, Santagata F, Iervolino E, Li S, Zhang G Y, Sarro P M, Zhang G Q et al 2016 Procedia Eng. 168 1094 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|