Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 068503    DOI: 10.1088/0256-307X/37/6/068503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers
Yang Jiang1, Ze-Yu Wan2, Guang-Nan Zhou1, Meng-Ya Fan1, Gai-Ying Yang1,5, R. Sokolovskij1, Guang-Rui Xia1,2, Qing Wang1,3,6**, Hong-Yu Yu1,4,6**
1School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
2Department of Materials Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
3Dongguan Institute of Opto-Electronics Peking University, Dongguan 523808, China
4Engineering Research Center of Integrated Circuits for Next-Generation Communications (Ministry of Education), Shenzhen 518055, China
5School of Innovation & Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, China
6Shenzhen Institute of the Third Generation Semiconductor, Shenzhen 518100, China
Cite this article:   
Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou et al  2020 Chin. Phys. Lett. 37 068503
Download: PDF(1449KB)   PDF(mobile)(1445KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel O$_{2}$ plasma-based digital etching technology for p-GaN/AlGaN structures without any etch-stop layer was investigated using an inductively coupled plasma (ICP) etcher, with 100 W ICP power and 40 W rf bias power. Under 40 sccm O$_{2}$ flow and 3 min oxidation time, the p-GaN etch depth was 3.62 nm per circle. The surface roughness improved from 0.499 to 0.452 nm after digital etching, meaning that no observable damages were caused by this process. Compared to the dry etch only methods with Cl$_{2}$/Ar/O$_{2}$ or BCl$_{3}$/SF$_{6}$ plasma, this technique smoothed the surface and could efficiently control the etch depth due to its self-limiting characteristic. Furthermore, compared to other digital etching processes with an etch-stop layer, this approach was performed using ICP etcher and less demanding on the epitaxial growth. It was proved to be effective in precisely controlling p-GaN etch depth and surface damages required for high performance p-GaN gate high electron mobility transistors.
Received: 07 March 2020      Published: 26 May 2020
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  81.05.Ea (III-V semiconductors)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: *Supported by the Guangdong Science and Technology Department (Grant Nos. 2019B010128001 and 2019B010142001), the Shenzhen Municipal Council of Science and Innovation (Grant Nos. JCYJ20180305180619573 and JCYJ20170412153356899), and the National Natural Science Foundation of China (Grant No. 61704004).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/068503       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/068503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Jiang
Ze-Yu Wan
Guang-Nan Zhou
Meng-Ya Fan
Gai-Ying Yang
R. Sokolovskij
Guang-Rui Xia
Qing Wang
Hong-Yu Yu
[1] Yusuke K, Keisuke U, Taketomo S, Tamotsu H et al 2017 J. Appl. Phys. 121 184501
[2] Chen K, Zhou C et al 2011 Phys. Status Solidi A 208 434
[3] Chen C, Keller S, Haberer E, Zhang L, Hu S E, Mishra U, Wu Y et al 1999 J. Vac. Sci. & Technol. B 17 2755
[4] Buttari D et al 2003 Appl. Phys. Lett. 83 4779
[5] Oka T et al 2008 IEEE Electron Device Lett. 29 668
[6] Wang Y H et al 2015 IEEE Electron Device Lett. 36 381
[7] Baharin A et al 2010 Conference on Optoelectronic and Microelectronic Materials and Devices (Canberra, ACT, Australia 12–15 December 2010) p 145
[8] Chen K J et al 2017 IEEE Trans. Electron Devices 64 779
[9] Ge M, Cai Q, Zhang B H et al 2019 Chin. Phys. B 28 107301
[10] Basu A, Kumar V, Adesida I et al 2007 J. Vac. Sci. & Technol. B 25 2607
[11] Yi C W, Wang R N, Huang W et al 2007 IEEE International Electron Devices Meeting (Washington DC, USA 10–12 December 2007) p 389
[12] Lv L, Gong X, Hao Y et al 2008 Acta Phys. Sin. 57 1128 (in Chinese)
[13] Chiu H C et al 2018 IEEE Trans. Electron Devices 65 4820
[14] Hahn H, Lükens G, Ketteniss N et al 2011 Appl. Phys. Express 4 114102
[15] Zhou Y, Zhong Y Z, Gao H W et al 2017 IEEE J. Electron Devices Soc. 5 340
[16] Buttari D, Chini A, Chakraborty A, Mishra U K et al 2004 Int. J. High Speed Electron. Syst. 14 756
[17] Buttari D, Heikman S, Keller S et al 2002 IEEE Lester Eastman Conference on High Performance Devices (Newark, DE, USA 6–8 August 2002) p 461
[18] Burnham S, Boutros K, Hashimoto P, Butler C, Wong D, Hu M, Micovic M et al 2010 Phys. Status Solidi C 7 2010
[19] Chiu H C, Yang C W, Chen C H, Fu J S, Chen F T et al 2011 Appl. Phys. Lett. 99 153508
[20] Sokolovskij R, Sun J, Santagata F, Iervolino E, Li S, Zhang G Y, Sarro P M, Zhang G Q et al 2016 Procedia Eng. 168 1094
Related articles from Frontiers Journals
[1] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 068503
[2] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 068503
[3] Wen-Jian Shi, Ze-Ming Kan, Chuan-Hui Cheng, Wen-Hui Li, Hang-Qi Song, Meng Li, Dong-Qi Yu, Xiu-Yun Du, Wei-Feng Liu, Sheng-Ye Jin, and Shu-Lin Cong. Antimony Selenide Thin Film Solar Cells with an Electron Transport Layer of Alq$_{3}$[J]. Chin. Phys. Lett., 2020, 37(10): 068503
[4] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 068503
[5] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 068503
[6] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 068503
[7] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 068503
[8] Yang Jiang, Ze-Yu Wan, Guang-Nan Zhou, Meng-Ya Fan, Gai-Ying Yang, R. Sokolovskij, Guang-Rui Xia, Qing Wang, Hong-Yu Yu. A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers *[J]. Chin. Phys. Lett., 0, (): 068503
[9] Bin Wang, Hao-Yu Kong, Lei Sun. Performance Analyses of Planar Schottky Barrier MOSFETs with Dual Silicide Layers at Source/Drain on Bulk Substrates and Material Studies of ErSi$_{x}$/CoSi$_{2}$/Si Stack Interface[J]. Chin. Phys. Lett., 2020, 37(3): 068503
[10] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 068503
[11] Junkang Li, Yiming Qu, Siyu Zeng, Ran Cheng, Rui Zhang, Yi Zhao. Ge Complementary Tunneling Field-Effect Transistors Featuring Dopant Segregated NiGe Source/Drain[J]. Chin. Phys. Lett., 2018, 35(11): 068503
[12] Li-Hua Dai, Da-Wei Bi, Zheng-Xuan Zhang, Xin Xie, Zhi-Yuan Hu, Hui-Xiang Huang, Shi-Chang Zou. Metastable Electron Traps in Modified Silicon-on-Insulator Wafer[J]. Chin. Phys. Lett., 2018, 35(5): 068503
[13] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 068503
[14] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 068503
[15] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 068503
Viewed
Full text


Abstract