Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 068102    DOI: 10.1088/0256-307X/37/6/068102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates
Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng**, Hong-Dong Li 
State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Cite this article:   
Ai-Qi Zhang , Qi-Liang Wang , Ying Gao  et al  2020 Chin. Phys. Lett. 37 068102
Download: PDF(1433KB)   PDF(mobile)(1424KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By vacuum sputtering and annealing processes of gold (Au) films on boron-doped diamond (BDD) surfaces, Au-nanoparticles/BDD (AuNP/BDD) composite substrates were prepared as surface-enhanced Raman scattering (SERS) substrates. The SERS performances of the substrate were investigated using methylene blue molecule as a probe. With the AuNPs having an average diameter of 20 nm, high performance of SERS was achieved at an enhancement factor of $9\times 10^{5}$, arising from the synergistic effect of electromagnetic enhancement from AuNPs and chemical enhancement from diamond. The AuNP/BDD substrate is demonstrated to be highly sensitive, reproducible, stable, and reusable for the SERS examination. Due to the facile preparation process and controllable surface morphology, the AuNP/BDD substrates are favorable as a high performance SERS platform performed in practical applications.
Received: 24 December 2019      Published: 26 May 2020
PACS:  81.05.ug (Diamond)  
  78.30.Am (Elemental semiconductors and insulators)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: *Supported by the National Natural Science Foundation of China (Grant Nos. 51672102 and 51972135).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/068102       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/068102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ai-Qi Zhang 
Qi-Liang Wang 
Ying Gao 
Shao-Heng Cheng
Hong-Dong Li 
[1] Li X, Chen G, Yang L, Jin Z and Liu J 2010 Adv. Funct. Mater. 20 2815
[2] Chen C, Zhou X, Ding T, Zhang J, Wang S, Xu J, Chen J, Dai J and Chen C 2016 Mater. Lett. 165 55
[3] Chen L, Liu F X, Zhan P, Pan J and Wang Z L 2011 Chin. Phys. Lett. 28 057801
[4] Stiles P L, Dieringer J A, Shah N C and Van Duyne R P 2008 Annu. Rev. Anal. Chem. 1 601
[5] Demirel G, Usta H, Yilmaz M, Celik M, Alidagi H A and Buyukserin F 2018 J. Mater. Chem. C 6 5314
[6] Ji W, Zhao B and Ozaki Y 2016 J. Raman Spectrosc. 47 51
[7] Prakash J, Sun S, Swart H C and Gupta R K 2018 Appl. Mater. Today 11 82
[8] Wang Y, Sun Z, Hu H, Jing S, Zhao B, Xu W, Zhao C and Lombardi J R 2007 J. Raman Spectrosc. 38 34
[9] Quagliano L G 2004 J. Am. Chem. Soc. 126 7393
[10] Jiang X, Sun X, Yin D, Li X, Yang M, Han X, Yang L and Zhao B 2017 Phys. Chem. Chem. Phys. 19 11212
[11] Song J, Cheng S, Li H, Guo H, Xu S and Xu W 2014 Mater. Lett. 135 214
[12] Gao Y, Gao N, Li H, Yuan X, Wang Q, Cheng S and Liu J 2018 Nanoscale 10 15788
[13] Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F and Zhao Z 2017 Nat. Commun. 8 1
[14] Song W, Ji W, Vantasin S, Tanabe I, Zhao B and Ozaki Y 2015 J. Mater. Chem. A 3 13556
[15] Ma Y, Liu J and Li H 2017 Biosens. Bioelectron. 92 21
[16] Yilmaz M, Ozdemir M, Erdogan H, Tamer U, Sen U, Facchetti A, Usta H and Demirel G 2015 Adv. Funct. Mater. 25 5669
[17] Naujok R R, Duevel R V and Corn R M 1993 Langmuir 9 1771
[18] Yang T, Yang H, Zhen S J and Huang C Z 2015 ACS Appl. Mater. & Interfaces 7 1586
[19] Sun B, Jiang X, Dai S and Du Z 2009 Mater. Lett. 63 2570
[20] Singh M K, Chettri P, Basu J, Tripathi A, Mukherjee B, Tiwari A and Mandal R 2019 Mater. Lett. 249 33
[21]Schatz G C, Young M A and Van Duyne R P 2006 Surface-Enhanced Raman Scattering (Berlin: Springer) p 19
[22] Han X X, Ji W, Zhao B and Ozaki Y 2017 Nanoscale 9 4847
[23] Degioanni S, Jurdyc A M, Bessueille F, Coulm J, Champagnon B and Vouagner D 2013 J. Appl. Phys. 114 234307
[24] Boerigter C, Aslam U and Linic S 2016 ACS Nano 10 6108
[25] Xie Z G, Lu Y H, Wang P, Lin K Q, Yan J and Ming H 2008 Chin. Phys. Lett. 25 4473
[26] Diederich L, Küttel O, Aebi P and Schlapbach L 1998 Surf. Sci. 418 219
[27]Wang T, Zhang Z, Liao F, Cai Q, Li Y, Lee S T and Shao M 2014 Sci. Rep. 4 1
[28] Song J, Li H, Lin F, Wang L, Wu H and Yang Y 2014 CrystEngComm 16 8356
[29] Zeng Z, Liu Y and Wei J 2016 Trends Anal. Chem. 75 162
Related articles from Frontiers Journals
[1] Linfeng Wan, Caoyuan Mu, Yaofeng Liu, Shaoheng Cheng, Qiliang Wang, Liuan Li, Hongdong Li, and Guangtian Zou. Structure and Wettability Engineering of Polycrystalline Diamond Films Treated by Thermally Oxidation, Second Growth and Surface Termination[J]. Chin. Phys. Lett., 2022, 39(3): 068102
[2] Kun Luo , Bing Liu , Lei Sun , Zhisheng Zhao, and Yongjun Tian . Design of a Class of New $sp^{2}$–$sp^{3}$ Carbons Constructed by Graphite and Diamond Building Blocks[J]. Chin. Phys. Lett., 2021, 38(2): 068102
[3] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates *[J]. Chin. Phys. Lett., 0, (): 068102
[4] Ze-Yang Ren, Jin-Feng Zhang, Jin-Cheng Zhang, Sheng-Rui Xu, Chun-Fu Zhang, Kai Su, Yao Li, Yue Hao. Growth and Characterization of the Laterally Enlarged Single Crystal Diamond Grown by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2018, 35(7): 068102
[5] Yan-Yan Shen, Yi-Xin Zhang, Ting Qi, Yu Qiao, Yu-Xin Jia, Hong-Jun Hei, Zhi-Yong He, Sheng-Wang Yu. Phase Transformation and Enhancing Electron Field Emission Properties in Microcrystalline Diamond Films Induced by Cu Ion Implantation and Rapid Annealing[J]. Chin. Phys. Lett., 2016, 33(08): 068102
[6] HU Xiao-Jun, LI Nian. Oxygen Ion Implantation Enhanced Silicon-Vacancy Photoluminescence and n-Type Conductivity of Ultrananocrystalline Diamond Films[J]. Chin. Phys. Lett., 2013, 30(8): 068102
[7] FAN Xiao-Hong,XU Bin**,NIU Zhen,ZHAI Tong-Guang,TIAN Bin. Fine Structural and Carbon Source Analysis for Diamond Crystal Growth using an Fe-Ni-C System at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(4): 068102
[8] YANG Yan-Ning, ZHANG Zhi-Yong**, ZHANG Fu-Chun, DONG Jun-Tang, ZHAO Wu, ZHAI Chun-Xue, ZHANG Wei-Hu. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds[J]. Chin. Phys. Lett., 2012, 29(1): 068102
[9] ZHANG Chun-Mei, ZHENG Yan-Bin, JIANG Zhi-Gang, LV Xian-Yi, HOU Xue, HU Shuang, LIU Jun-Wei. Effect of CO2 Addition on Preparation of Diamond Films by Direct-Current Hot-Cathode Plasma Chemical Vapor Deposition Method[J]. Chin. Phys. Lett., 2010, 27(8): 068102
[10] WANG Qi-Liang, LÜ, Xian-Yi, LI Liu-An, CHENG Shao-Heng, LI Hong-Dong. Growth and Characteristics of Freestanding Hemispherical Diamond Films by Microwave Plasma Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2010, 27(4): 068102
Viewed
Full text


Abstract