Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 067801    DOI: 10.1088/0256-307X/37/6/067801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure
Meng-Yao Yan , Bi-Jun Xu**, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu 
School of Sciences, Zhejiang University of Science and Technology, Hangzhou 310023, China
Cite this article:   
Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun  et al  2020 Chin. Phys. Lett. 37 067801
Download: PDF(942KB)   PDF(mobile)(923KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Equipped with multiple and unique features, a terahertz absorber exhibits great potential for use in the development of communication, military, and other fields where achieving perfect broadband absorption has always been a challenge. We present a metamaterial terahertz (THz) absorber comprising a cross-dipole patch, four symmetric square patches and an asymmetric open-loop patch with a good perfect absorption rate for TE and TM polarizations. The average absorption of more than 96% occurs in the frequency range from 2.4 THz to 3.8 THz, in which the absorptance peak can reach 99.9%, as indicated by simulated results. Our design has broad potential applications in THz couplers, as well as in fields like biology and security.
Received: 24 February 2020      Published: 26 May 2020
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.70.-a (Optical materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/067801       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/067801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meng-Yao Yan 
Bi-Jun Xu
Zhi-Chao Sun 
Zhen-Dong Wu 
Bai-Rui Wu 
[1] Koenig S, Lopez-Diaz D, Antes J et al 2013 Nat. Photon. 7 977
[2] Kurt H, Citrin D 2005 Appl. Phys. Lett. 87 041108
[3] Watts C M, Liu X, Padilla W J 2012 Adv. Mater. 24 OP181
[4] Fan S, Li T, Zhou J et al 2017 AIP Adv. 7 115202
[5] Tao H, Landy N I, Bingham C M et al 2008 Opt. Express 16 7181
[6] Chen H T 2012 Opt. Express 20 7165
[7] Smith D R, Padilla W J, Vier D et al 2000 Phys. Rev. Lett. 84 4184
[8] Zhang B, Lv L, He T et al 2015 Appl. Phys. Lett. 107 093301
[9] Kapoor A, Singh G 2000 J. Lightwave Technol. 18 849
[10] Feng L, Xu Y L, Fegadolli W S et al 2013 Nat. Mater. 12 108
[11] Grady N K, Heyes J E, Chowdhury D R et al 2013 Science 340 1304
[12] Yachmenev A, Lavrukhin D, Glinskiy I et al 2019 Opt. Eng. 59 061608
[13] Li W, Coppens Z J, Besteiro L V et al 2015 Nat. Commun. 6 8379
[14] Cong L, Pitchappa P, Lee C et al 2017 Adv. Mater. 29 1700733
[15] Duan G, Schalch J, Zhao X et al 2018 Opt. Express 26 2242
[16] Landy N I, Sajuyigbe S, Mock J J et al 2008 Phys. Rev. Lett. 100 207402
[17] Liu N, Mesch M, Weiss T et al 2010 Nano Lett. 10 2342
[18] Wang M, Huang S Y, Hu R et al 2019 Chin. Phys. B 28 087804
[19] Low T, Avouris P 2014 ACS Nano 8 1086
[20] Tang X P, Yang Z Q, Shi Z J, Lan F 2016 Chin. Phys. Lett. 33 088401
[21] Wang B X, Wang G Z 2018 Plasmonics 13 123
[22] Islam M R, Kabir M F, Talha K M A et al 2020 Opt. Eng. 59 016113
[23] Paulish A, Gusachenko A, Morozov A et al 2019 Opt. Eng. 59 061612
[24] Fan C Z, Tian Y C, Ren P W et al 2019 Chin. Phys. B 28 076105
[25] Liu M, Yang Q, Rifat A A et al 2019 Adv. Opt. Mater. 7 1900736
[26] Duan G, Schalch J, Zhao X et al 2019 Sens. Actuators A 287 21
[27] Daraei O M, Goudarzi K, Bemani M 2020 Opt. Laser Technol. 122 105853
[28] Zhang H, Ling F, Wang H et al 2020 Opt. Commun. 463 125394
[29] Zhong Q, Wang T, Jiang X et al 2020 Opt. Commun. 458 124637
[30] Yan M Y, Sun Z C, Wu B R et al 2020 Front. Phys. 8 46
[31] Yang P, Qin J, Schalch J, Xu J, Han T C et al 2019 Acta Phys. Sin. 68 087802 (in Chinese)
[32] Soheilifar, M R 2019 Optik 182 702
[33] Hao S B, Zhang L Z, Ma Y Y, Chen M Y et al 2019 Chin. Phys. Lett. 36 124205
[34] Wang D T, Wang X C, Zhang X, Yuan H R et al 2020 Chin. Phys. Lett. 37 045201
[35] Li S H, Li J S 2019 Chin. Phys. B 28 094210
[36] Xie Y M, Liu C Y, Ding Z J et al 2016 Chin. Phys. Lett. 33 094208
[37] Zhao J, Zhang J, Qin C et al 2016 Chin. Phys. Lett. 33 027801
[38] Wang C F, Li Q S, Wang J S et al 2016 Chin. Phys. Lett. 33 076802
[39] Wang L, Song W, Hu W, Li G, Luo X et al 2019 Chin. Phys. B 28 018503
[40] Meng X Q, Chen S L, Fang Y Z, Kou J L 2019 Chin. Phys. B 28 078101
[41] Wang W M, Zhang L L, Li Y T, Sheng Z M, Zhang J 2018 Acta Phys. Sin. 67 124202 (in Chinese)
[42] Liu C, Ooi Y K, Islam S, Xing H, Jena D and Zhang J 2018 Appl. Phys. Lett. 112 011101
[43] Lu X H, Jing C B, Wang L W et al 2019 Chin. Phys. Lett. 36 098501
[44] Cheng X T and Liang X G 2017 Chin. Phys. B 26 120505
[45] Xia G, Kou W, Yang L and Du Y C 2017 Chin. Phys. B 26 104403
[46] Jiang S L, Li X F, Su R F, Jia X Q et al 2017 Chin. Phys. Lett. 34 090701
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 067801
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 067801
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 067801
[4] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 067801
[5] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 067801
[6] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 067801
[7] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 067801
[8] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 067801
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 067801
[10] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 067801
[11] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 067801
[12] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 067801
[13] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 067801
[14] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 067801
[15] Kai-Lun Zhang, Zhi-Ling Hou, Ling-Bao Kong, Hui-Min Fang, Ke-Tao Zhan. Origin of Negative Imaginary Part of Effective Permittivity of Passive Materials[J]. Chin. Phys. Lett., 2017, 34(9): 067801
Viewed
Full text


Abstract