Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 067501    DOI: 10.1088/0256-307X/37/6/067501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping
Yu-Jie Yuan1, Cheng-He Li2, Shang-Jie Tian2, He-Chang Lei2**, Xiao Zhang1**
1State Key Laboratory of Information Photonicsx and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2Department of Physics, and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
Cite this article:   
Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian et al  2020 Chin. Phys. Lett. 37 067501
Download: PDF(637KB)   PDF(mobile)(623KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the influence of Cr doping on magnetic properties of $\alpha$-RuCl$_{3}$ single crystals in detail. With increasing Cr content, the $c$-axial lattice parameter increases gradually, implying that the Cr doping may weaken the interlayer interactions. The magnetism of Ru$_{1-x}$Cr$_{x}$Cl$_{3}$ single crystals evolves from a long-range AFM order to a possible spin-glass state with Cr doping. The appearance of a possible spin-glass state can be explained by the introduction of FM interaction by Cr$^{3+}$ ions, which competes with the AFM interaction between Ru$^{3+}$ ions. Moreover, the larger magnetic moment of Cr$^{3+}$ ion with $S= 3/2$ than Ru$^{3+}$ ion with $J_{\rm eff}= 1/2$ also results in a monotonic increase of the effective moment of Ru$_{1-x}$Cr$_{x}$Cl$_{3}$ single crystal.
Received: 21 January 2020      Published: 26 May 2020
PACS:  75.50.Ee (Antiferromagnetics)  
  75.50.Lk (Spin glasses and other random magnets)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
Fund: *Supported by the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China (Grant Nos. 15XNLQ07, 18XNLG14, and 19XNLG17).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/067501       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/067501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yu-Jie Yuan
Cheng-He Li
Shang-Jie Tian
He-Chang Lei
Xiao Zhang
[1] Huang B et al 2017 Nature 546 270
[2] Banerjee A et al 2016 Nat. Mater. 15 733
[3] Haraguchi Y et al 2017 Inorg. Chem. 56 3483
[4] Kubota Y et al 2015 Phys. Rev. B 91 094422
[5] Sandilands L J et al 2016 Phys. Rev. B 93 075144
[6] Banerjee A et al 2017 Science 356 1055
[7] Kitaev A 2006 Ann. Phys. 321 2
[8] Sears J A et al 2015 Phys. Rev. B 91 144420
[9] Johnson R D et al 2015 Phys. Rev. B 92 235119
[10] Cao H B et al 2016 Phys. Rev. B 93 134423
[11] Baek S H et al 2017 Phys. Rev. Lett. 119 037201
[12] Sears J A et al 2017 Phys. Rev. B 95 180411(R)
[13] Zheng J et al 2017 Phys. Rev. Lett. 119 227208
[14] Hentrich R, Wolter A U B, Zotos X, Brenig W, Nowak D, Isaeva A, Doert T, Banerjee A, Lampen-Kelley P, Mandrus D G, Nagler S E, Sears J, Kim Y J, Büchner B and Hess C 2018 Phys. Rev. Lett. 120 117204
[15] Bastien G, Garbarino G, Yadav R, Martinez-Casado F J, Beltrán Rodríguez R, Stahl Q, Kusch M, Limandri S P, Ray R, Lampen-Kelley P, Mandrus D G, Nagler S E, Roslova M, Isaeva A, Doert T, Hozoi L, Wolter A U B, Büchner B, Geck J and Van Den Brink J 2018 Phys. Rev. B 97 241108
[16] Wang Z, Guo J, Tafti F F, Hegg A, Sen S, Sidorov V A, Wang L, Cai S, Yi W, Zhou Y, Wang H, Zhang S, Yang K, Li A, Li X, Li Y, Liu J, Shi Y, Ku W, Wu Q, Cava R J and Sun L 2018 Phys. Rev. B 97 245149
[17] Lei H C, Yin W G, Zhong Z and Hosono H 2014 Phys. Rev. B 89 020409(R)
[18] Manni S, Tokiwa Y and Gegenwart P 2014 Phys. Rev. B 89 241102
[19] Mehlawat K, Sharma G and Singh Y 2015 Phys. Rev. B 92 134412
[20] Lampen-Kelley P, Banerjee A, Aczel A A, Cao H B, Stone M B, Bridges C A, Yan J Q, Nagler S E and Mandrus D 2017 Phys. Rev. Lett. 119 237203
[21] Do S H, Lee W J, Lee S, Choi Y S, Lee K J, Gorbunov D I, Wosnitza J, Suh B J and Choi K Y 2018 Phys. Rev. B 98 014407
[22] Shannon R D 1976 Acta Crystallogr. A 32 751
[23] McGuire M A, Clark G, K C S, Chance W M, Jellison Jr. G E, Cooper V R, Xu X and Sales B C 2017 Phys. Rev. Mater. 1 014001
[24] Majumder M, Schmidt M, Rosner H, Tsirlin A A, Yasuoka H and Baenitz M 2015 Phys. Rev. B 91 180401
[25] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[26] Tang Y k, Sun Y and Cheng Z h 2006 Phys. Rev. B 73 012409
[27] Lei H C, Abeykoon M, Bozin E S and Petrovic C 2011 Phys. Rev. B 83 180503(R)
[28] Tian J, Ivanovski V N, Szalda D, Lei H, Wang A, Liu Y, Zhang W, Koteski V and Petrovic C 2019 Inorg. Chem. 58 3107
Related articles from Frontiers Journals
[1] Jian-Gang Kong, Qing-Xu Li, Jian Li, Yu Liu, and Jia-Ji Zhu. Self-Supervised Graph Neural Networks for Accurate Prediction of Néel Temperature[J]. Chin. Phys. Lett., 2022, 39(6): 067501
[2] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 067501
[3] Chunyan Liao, Yahui Jin, Wei Zhang, Ziming Zhu, and Mingxing Chen. Fe$_{2}$Ga$_{2}$S$_{5}$ as a 2D Antiferromagnetic Semiconductor[J]. Chin. Phys. Lett., 2020, 37(10): 067501
[4] Yu-Jie Yuan, Cheng-He Li, Shang-Jie Tian, He-Chang Lei, Xiao Zhang. Tuning of Magnetic Properties of $\alpha$-RuCl$_{3}$ Single Crystal by Cr Doping *[J]. Chin. Phys. Lett., 0, (): 067501
[5] Huan-Cheng Chen, Zhe-Feng Lou, Yu-Xing Zhou, Qin Chen, Bin-Jie Xu, Shui-Jin Chen, Jian-Hua Du, Jin-Hu Yang, Hang-Dong Wang, Ming-Hu Fang. Negative Magnetoresistance in Antiferromagnetic Topological Insulator EuSn$_2$As$_2$$^{*}$[J]. Chin. Phys. Lett., 2020, 37(4): 067501
[6] Qi Wang, Qianheng Du, Cedomir Petrovic, Hechang Lei. Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal[J]. Chin. Phys. Lett., 2020, 37(2): 067501
[7] Xu-Peng Zhao, Da-Hai Wei, Jun Lu, Si-Wei Mao, Zhi-Feng Yu, Jian-Hua Zhao. Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction[J]. Chin. Phys. Lett., 2018, 35(8): 067501
[8] Pan Liu, Wei-Hua Wang, Wei-Chao Wang, Ya-Hui Cheng, Feng Lu, Hui Liu. D-Type Anti-Ferromagnetic Ground State in Ca$_{2}$Mn$_{2}$O$_{5}$[J]. Chin. Phys. Lett., 2017, 34(2): 067501
[9] CHEN Xu-Liang, SONG Wen-Hai, YANG Zhao-Rong. Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4[J]. Chin. Phys. Lett., 2015, 32(12): 067501
[10] MALIK Muhammad-Imran, SUN Ying, DENG Si-Hao, SHI Ke-Wen, HU Peng-Wei, WANG Cong. Nitrogen-Induced Change of Magnetic Properties in Antiperovskite-Type Carbide: Mn3InC[J]. Chin. Phys. Lett., 2015, 32(06): 067501
[11] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 067501
[12] LIU Zhao-Sen, YANG Cui-Hong, GU Bin, MA Rong, LI Qing-Fang. The Application of a New Simulation Approach to Ferrimagnetic Nanowires[J]. Chin. Phys. Lett., 2013, 30(9): 067501
[13] XU Yin-Jie, ZHAO Hui, CHEN Yu-Guang, YAN Yong-Hong. Spin-Peierls Instability in the Ferromagnetic Heisenberg Ladder[J]. Chin. Phys. Lett., 2013, 30(3): 067501
[14] YUAN Xue-Yong, XUE Xiao-Bo, SI Li-Fang, DU Jun, XU Qing-Yu. Exchange Bias in Polycrystalline BiFe1-xMnxO3/Ni81Fe19 Bilayers[J]. Chin. Phys. Lett., 2012, 29(9): 067501
[15] CHEN Feng-Liang,ZHOU Shi-Ming**. Magnetoresistance Effect in Antiferromagnet-Based Nanogranular Films[J]. Chin. Phys. Lett., 2012, 29(4): 067501
Viewed
Full text


Abstract