Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 066801    DOI: 10.1088/0256-307X/37/6/066801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Surface Oxygen Adsorption and Electric Property of Hydrogen-Terminated Single Crystal Diamonds by UV/ozone Treatment
Ming-Chao Yang , Lin-Feng Wan , Jing-Cheng Wang , Zi-Cheng Ma , Peng Wang , Nan Gao , Hong-Dong Li**
State Key Lab of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
Cite this article:   
Ming-Chao Yang , Lin-Feng Wan , Jing-Cheng Wang  et al  2020 Chin. Phys. Lett. 37 066801
Download: PDF(504KB)   PDF(mobile)(497KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Surface terminations of diamond play an important role in determining the electric properties of diamond-based electronic devices. We report an ultraviolet/ozone (UV/ozone) treatment process on hydrogen-terminated single crystal diamond (H-diamond) to modulate the carrier behavior related to varying oxygen adsorption on surfaces. By UV/ozone treatments, the induced oxygen radicals are chemically adsorbed on the H-terminated diamond and replace the original adsorbed H, which is analyzed by x-ray photoelectron spectroscopy. The concentration of oxygen adsorbed on surface increases from $\sim$3% to $\sim$8% with increasing the ozone treatment time from 20 s to 600 s. It is further confirmed by examining the wettability properties of the varying diamond surfaces, where the hydrophobic for H-termination transfers to hydrophilic for partly O-termination. Hall effect measurements show that the resistance (hole mobility) of the UV/ozone-treated H-diamond continuously increases (decrease) by two orders of magnitude with increasing UV/ozone treatment time from 20 s to 600 s. The results reveal that UV/ozone treatment becomes an efficient method to modulate the surface electrical properties of H-diamonds for further investigating the oxygenation effect on two-dimensional hole gas based diamond devices applied in some extreme environments.
Received: 27 February 2020      Published: 26 May 2020
PACS:  68.47.Gh (Oxide surfaces)  
  73.25.+i (Surface conductivity and carrier phenomena)  
  68.47.Fg (Semiconductor surfaces)  
Fund: *Supported by the National Natural Science Foundation of China under Grant Nos. 51672102 and 51972135.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/066801       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/066801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ming-Chao Yang 
Lin-Feng Wan 
Jing-Cheng Wang 
Zi-Cheng Ma 
Peng Wang 
Nan Gao 
Hong-Dong Li
[1] Nemanich R J, Carlisle J A, Hirata A and Haenen K 2014 MRS Bull. 39 490
[2]Koizumi S, Umezawa H, Pernot J and Suzuki M 2018 Power Electronics Device Applications of Diamond Semiconductors (Amsterdam: Woodhead Publishing)
[3]Nebel C and Ristein J 2003 Thin-Film Diamond I: Part of the Semiconductors and Semimetals Series (Amsterdam: Elsevier Academic Press)
[4] Kawarada H 2012 Jpn. J. Appl. Phys. 51 090111
[5] Satoshi K, Kenji W, Masataka H and Hisao K 2001 Science 292 1899
[6] Shur M, Gelmont B and AsifKhan M 1996 J. Electron. Mater. 25 777
[7] Nebel C, Sauerer C, Ertl F, Stutzmann M and Jackman R 2001 Appl. Phys. Lett. 79 4541
[8] Kazushi H, Sadanori Y, Hideyo O and Koji K 1996 Appl. Phys. Lett. 68 376
[9] Maier F, Riedel M, Mantel B, Ristein J and Ley L 2000 Phys. Rev. Lett. 85 3472
[10] Crawford K G, Qi D and McGlynn J 2018 Sci. Rep. 8 3342
[11] Kasu M 2017 Jpn. J. Appl. Phys. 56 01AA01
[12] Oing D, Geller M, Lorke A and Wöhrl N 2019 Diamond Relat. Mater. 97 107450
[13] Hu X J and Li N 2013 Chin. Phys. Lett. 30 088102
[14] Torrengo S and Minati L 2009 Diamond Relat. Mater. 18 804
[15] Kulisch W, Popov C, Gilliland D and Ceccone G 2010 Surf. Interface Anal. 42 1152
[16] López G P, Castner D G and Ratner B D 1991 Surf. Interface Anal. 17 267
[17] Kawarada H, Sasaki H and Sato A 1995 Phys. Rev. B 52 11351
[18] Sakai T, Song K S, Kanazawa H and Nakamura Y 2003 Diamond Relat. Mater. 12 1971
[19] Ma Z C, Gao N, Cheng S H, Liu J S, Yang M C, Wang P, Feng Z Y, Wang Q L and Li H D 2020 Chin. Phys. Lett. 37 046801
[20] Yang Y Z, Li H D, Cheng S H, Zou G T, Wang C X and Lin Q 2014 Chem. Commun. 50 2900
[21] Yu X X, Zhou J J, Zhang S, Cao Z Y, Kong Y C and Chen T S 2019 Appl. Phys. Lett. 115 192102
[22] Yuan X X, Gao N, Gao X, Qiu D C, Xu R, Sun Z L, Jiang Z G, Liu J S and Li H D 2019 Sens. Actuators B 281 830
[23] Strobel P, Riedel M, Ristein J and Ley L 2004 Nature 430 439
[24] Hirama K, Takayanagi H, Yamauchi S, Yang J H and Kawarada H 2008 Appl. Phys. Lett. 92 112107
Related articles from Frontiers Journals
[1] Ming-Chao Yang , Lin-Feng Wan , Jing-Cheng Wang , Zi-Cheng Ma , Peng Wang , Nan Gao , Hong-Dong Li. Surface Oxygen Adsorption and Electric Property of Hydrogen-Terminated Single Crystal Diamonds by UV/ozone Treatment *[J]. Chin. Phys. Lett., 0, (): 066801
[2] N. Panahi, M. T. Hosseinnejad, M. Shirazi, M. Ghoranneviss. Optimization of Gas Sensing Performance of Nanocrystalline SnO$_{2}$ Thin Films Synthesized by Magnetron Sputtering[J]. Chin. Phys. Lett., 2016, 33(06): 066801
[3] PANG Hua**, ZHANG Gu-Ling, WANG Xing-Quan, LV Guo-Hua, CHEN Huan, YANG Si-Ze, . Mechanical Performances of Carbonitriding Films on Cast Iron by Plasma Electrolytic Carbonitriding[J]. Chin. Phys. Lett., 2011, 28(11): 066801
[4] WANG Yuan-Xu. Giant Static Dielectric Constant of Strained PbTiO3[J]. Chin. Phys. Lett., 2009, 26(1): 066801
[5] WEI Shu-Yi, WANG Zhi-Guo, YANG Zong-Xian. Surfactant Effects of Au on Polar ZnO Surfaces[J]. Chin. Phys. Lett., 2007, 24(3): 066801
Viewed
Full text


Abstract