Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 064301    DOI: 10.1088/0256-307X/37/6/064301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters
Jian Li1,2†**, Hong-Juan Yang3,4†, Jun Ma3, Xiang Gao5, Jun-Hong Li3, Jian-Zheng Cheng1, Wen Wang3, Cheng-Hao Wang3,4**
1School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China
2State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
3Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
4University of Chinese Academy of Sciences, Beijing 100049, China
5College of Mechanical Engineering and Application Electronics Technology, Beijing University of Technology, Beijing 100124, China
Cite this article:   
Jian Li, Hong-Juan Yang, Jun Ma et al  2020 Chin. Phys. Lett. 37 064301
Download: PDF(1338KB)   PDF(mobile)(1340KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Without prior knowledge of medium parameters, a method is proposed to detect and locate a target in layered media. Experiments were carried out for liquid/liquid and solid/liquid layered media, and the location of a target in them was obtained using three methods combined, i.e., the least-square method, the method of finding minimum dispersal degree of target distribution, and the snapshot time reversal and reverse time migration mixed method. The medium parameters, i.e., the acoustic velocities of upper and lower media as well as the thickness of the upper medium, were inversed simultaneously. The results show that the position of target is consistent with its actual position. Thus, the detection and location of a target in layered media are achieved without prior knowledge of medium parameters, and it overcomes the difficulty that the common time reversal method only detects the target, but cannot locate it.
Received: 19 January 2020      Published: 26 May 2020
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.60.+d (Acoustic signal processing)  
Fund: *Supported by the Key Research Program of the Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC007), the National Natural Science Foundation of China (Grant No. 11804256), and the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201807).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/064301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/064301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian Li
Hong-Juan Yang
Jun Ma
Xiang Gao
Jun-Hong Li
Jian-Zheng Cheng
Wen Wang
Cheng-Hao Wang
[1]Fink M et al 1989 IEEE Ultrason. Symp. Proc. (Montreal, Canada, 3–6 October 1989) p 681
[2]Fink M et al 2004 IEEE Ultrason. Symp. Proc. (Montreal, Canada, 23–27 August 2004) p 850
[3] Cassereau D and Fink M 1994 J. Acoust. Soc. Am. 96 3145
[4]Wei W and Wang C H 2000 Chin. J. Acoust. 19 83
[5] Fink M 1997 Phys. Today 50 34
[6] Lu M H et al 2004 Chin. Phys. Lett. 21 1766
[7]Zhang X Y and Luo L Y 2016 Acta Acust. 41 67 (in Chinese)
[8] Fink M et al 2008 J. Acoust. Soc. Am. 123 3428
[9] Kim S et al 2004 J. Acoust. Soc. Am. 115 1525
[10] Song H C et al 2005 J. Acoust. Soc. Am. 118 1381
[11] Etgen J, Gray S H and Zhang Y 2009 Geophysics 74 WCA5
[12] Müller S, Niederleithinger E and Bohlen T 2012 Int. J. Geophys. 2012 128465
[13] Zhou H W, Hu H, Zou Z H, Wo Y K and Youn O 2018 Earth-Sci. Rev. 179 207
[14] Yang H J, Li J, Gao X, Ma J, Li J H, Wang W and Wang C H 2019 Chin. Phys. Lett. 36 114301
[15] Gao X, Li J, Ma J, Li J H, Shi F F, Wang W and Wang C H 2019 Sci. Chin. Phys. Mech. 62 034311
[16]Yang H J, Li J, Ma J, Li J H, Wang W and Wang C H 2019 Proceeding of 14th IEEE Symposium on Piezoelectrcity, Acoustic Waves, and Device Applications (Shijiazhuang, China 1–4 November 2019) p 1
[17]Brekhovskikh L M 1980 Waves in Layered Media 2nd edn (New York: Academic Press) chap 4 p 225
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 064301
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 064301
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 064301
[4] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 064301
[5] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 064301
[6] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 064301
[7] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 064301
[8] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 064301
[9] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 064301
[10] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 064301
[11] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 064301
[12] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 064301
[13] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 064301
[14] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 064301
[15] ZHANG Hai-Yan, XU Jian, MA Shi-Wei. High-Frequency Guided Wave Scattering by a Partly Through-Thickness Hole Based on 3D Theory[J]. Chin. Phys. Lett., 2015, 32(08): 064301
Viewed
Full text


Abstract