FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A 117-W 1.66-Times Diffraction Limited Continuous-Wave Nd:YVO$_{4}$ Zigzag Slab Laser with Multilayer Amplified-Spontaneous-Emission Absorbing Coatings |
Zhi-Feng Zhang1,2, Shuai Li3, Yang Li2, Yang Kou2, Ke Liu2, Yan-Yong Lin2, Lei Yuan2, Yi-Ting Xu2**, Qin-Jun Peng2, Zu-Yan Xu2 |
1University of Chinese Academy of Sciences, Beijing 100190, China 2Key Laboratory of Solid-State Laser, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China 3Beijing Aerocim Technology Co., Ltd, Beijing 100043, China
|
|
Cite this article: |
Zhi-Feng Zhang, Shuai Li, Yang Li et al 2020 Chin. Phys. Lett. 37 064203 |
|
|
Abstract We report a continuous-wave end-pumped Nd:YVO$_{4}$ zigzag slab laser with multilayer amplified spontaneous emission (ASE) absorbing coatings. The coatings are deposited on the slab faces. A five-layer structure consists of SiO$_{2}$-Ti-SiO$_{2}$-Ti-Au, and the thicknesses are 2520 nm, 10 nm, 160 nm, 24 nm and 200 nm, respectively. The designed coatings show good performance for the ASE control in the experimental tests. A stable-unstable hybrid laser oscillator along orthogonal directions in the slab aperture is further configured, achieving the 117 W output at a pump of 328 W. The beam quality factors $M^{2}$ in the unstable direction and stable direction are 1.57 and 1.66, respectively.
|
|
Received: 10 March 2020
Published: 26 May 2020
|
|
PACS: |
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.60.Pk
|
(Continuous operation)
|
|
|
Fund: *Supported by the National Key R&D of China (Grant No. 2016YFB0402103), the National Natural Science Foundation of China (Grant No. 61875208), and the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No. GJJSTD20180004). |
|
|
[1] | McDonagh L, Wallenstein R, Knappe R et al 2006 Opt. Lett. 31 3297 |
[2] | Zhu P, Li D J, Hu P X et al 2008 Opt. Lett. 33 1930 |
[3] | Xu L, Zhang H L, Mao Y F et al 2014 Laser Phys. Lett. 11 115809 |
[4] | Shen Y J, Gong M L, Ji E C et al 2017 Opt. Commun. 383 430 |
[5] | Waritanant T and Major A 2016 Appl. Phys. B 122 135 |
[6] | Sridharan A K, Saraf S, Sinha S et al 2006 Appl. Opt. 45 3340 |
[7] | Chen Z Z, Xu Y T, Guo Y D et al 2015 Appl. Opt. 54 5011 |
[8] | Goodno G D, Komine H et al 2006 Opt. Lett. 31 1247 |
[9] | Allen L and Peters G I 1973 Phys. Rev. A 8 2031 |
[10] | Jiao H F, He Y, Bao G H et al 2017 Appl. Opt. 56 C100 |
[11] | Nguyen V B, Gubanova L A and Hoang T L 2018 J. Opt. Technol. 85 53 |
[12] | Lee T P, Burrus C A and Miller B I 1973 IEEE J. Quantum Electron. 9 820 |
[13] | Hall D C, Burns W K and Moeller R P 1995 J. Lightwave Technol. 13 1452 |
[14] | Dobrowolski J A, Li L and Kemp R A 1995 Appl. Opt. 34 5673 |
[15] | Sullivan B T and Byrt K L 1995 Appl. Opt. 34 5684 |
[16] | Xu L, Zhang H L, He J L et al 2012 Appl. Opt. 51 2012 |
[17] | Chen Y F, Lan Y P and Wang S C 2000 Opt. Lett. 25 1016 |
[18] | Mao Y F, Zhang H L, Xu L et al 2014 Chin. Phys. Lett. 31 074206 |
[19] | Zhang H L, Xu L, Cui L et al 2010 Chin. Phys. Lett. 27 104212 |
[20] | Deng B, Zhang H L, Xu L et al 2014 Chin. Phys. Lett. 31 114201 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|