Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 064202    DOI: 10.1088/0256-307X/37/6/064202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy
Kai Ning1,2, Lei Hou1,3, Song-Tao Fan1,2, Lu-Lu Yan1,2, Yan-Yan Zhang1,2, Bing-Jie Rao1,2, Xiao-Fei Zhang1,2, Shou-Gang Zhang1,2, Hai-Feng Jiang1,2**
1Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China
2School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
Cite this article:   
Kai Ning, Lei Hou, Song-Tao Fan et al  2020 Chin. Phys. Lett. 37 064202
Download: PDF(983KB)   PDF(mobile)(972KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a multi-branch all polarization-maintaining Er:fiber frequency comb with five application ports for precise measurement of atomic/molecular transition frequencies in the near-infrared region. A fully stabilized Er:fiber frequency comb with a nonlinear amplifying loop mirror is achieved. The in-loop relative instability of stabilized carrier-envelope-offset frequency is $5.6\times 10^{-18}$ at 1 s integration time, while that of the repetition rate is well below $1.8\times 10^{-12}$ limited by the measurement noise floor of the commercial frequency counter. Five application ports are individually optimized for applications with different wavelengths (1064 nm, 1083 nm, 1380 nm, 1637 nm and 1750 nm). The beat note between the optical frequency comb and continuous laser exhibits the signal-to-noise ratio of at least 30 dB at a resolution bandwidth of 100 kHz. The in-loop frequency instability of the comb is evaluated to be good enough for measurement of rotation-resolved transitions of molecules below 1 kHz resolution.
Received: 07 February 2020      Published: 26 May 2020
PACS:  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.55.Wd (Fiber lasers)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: *Supported by the National Natural Science Foundation of China (Grant Nos. 61825505 and 91536217).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/064202       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/064202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kai Ning
Lei Hou
Song-Tao Fan
Lu-Lu Yan
Yan-Yan Zhang
Bing-Jie Rao
Xiao-Fei Zhang
Shou-Gang Zhang
Hai-Feng Jiang
[1] Li Y et al 2017 Opt. Express 25 18017
[2] Rubiola E and Santarelli G 2013 Nat. Photon. 7 269
[3] Chavez Boggio J M et al 2018 Opt. Commun. 415 186
[4] Wang J et al 2018 J. Chem. Phys. 148 029902
[5] O'Keefe A and Deacon D A G 1988 Rev. Sci. Instrum. 59 2544
[6] Domyslawska J et al 2012 J. Chem. Phys. 136 024201
[7] Mondelain D et al 2015 J. Quant. Spectrosc. Radiat. Transfer 154 35
[8] Bielska K et al 2017 J. Quant. Spectrosc. Radiat. Transfer 201 156
[9] Moulton P F 1986 J. Opt. Soc. Am. B 3 125
[10] Diddams S A 2010 J. Opt. Soc. Am. B 27 B51
[11] Hofer M, Fermann M E, Haberl F, Ober M H and Schmidt A J 1991 Opt. Lett. 16 502
[12] Hänsel W, Hoogland H, Giunta M, Schmid S, Steinmetz T, Doubek R, Mayer P, Dobner S, Cleff C, Fischer M and Holzwarth R 2017 Appl. Phys. B 123 41
[13] Kuse N, Jiang J, Lee C C, Schibli T R and Fermann M E 2016 Opt. Express 24 3095
[14] Giunta M, Hansel W, Fischer M, Lezius M and Holzwarth R 2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS) (Besancon, France, 9–13 July 2017) p 777
[15] Ohmae N, Kuse N, Fermann M E and Katori H 2017 Appl. Phys. Express 10 062503
[16] Zheng X, Sun Y, Chen J J, Jiang W, Pachucki K and Hu S M 2017 Phys. Rev. Lett. 119 263002
[17] Kassi S and Campargue A 2011 J. Mol. Spectrosc. 267 36
[18] Lin H, Lei Y, Feng X and Zhang J T 2019 Phys. Rev. Lett. 122 013002
[19] Arslanov D D, Spunei M, Mandon J, Cristescu S M, Persijn S T and Harren F J M 2013 Laser & Photon. Rev. 7 188
[20] Hisai Y, Akamatsu D, Kobayashi T, Okubo S, Inaba H, Hosaka K, Yasuda M and Hong F L 2019 Opt. Express 27 6404
[21] Zhang Y Y, Yan L L, Zhao W Y, Meng S, Fan S T, Zhang L, Guo W G, Zhang S G and Jiang H F 2015 Chin. Phys. B 24 064209
[22] Fan S T, Zhang Y Y, Yan L L, Guo W G, Zhang S G and Jiang H F 2019 Chin. Phys. B 28 64204
[23] Wai P K A, Menyuk C R, Lee Y C and Chen H H 1986 Opt. Lett. 11 464
[24] Husakou A V and Herrmann J 2001 Phys. Rev. Lett. 87 203901
[25] Husakou A V and Herrmann J 2002 J. Opt. Soc. Am. B 19 2171
[26] Ortigosa-Blanch A, Knight J C and Russell P S J 2002 J. Opt. Soc. Am. B 19 2567
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 064202
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 064202
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 064202
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 064202
[5] Chao Wang, Xue-Feng Liu, Wen-Kai Yu, Xu-Ri Yao, Fu Zheng, Qian Dong, Ruo-Ming Lan, Zhi-Bin Sun, Guang-Jie Zhai, Qing Zhao. Computational Spectral Imaging Based on Compressive Sensing[J]. Chin. Phys. Lett., 2017, 34(10): 064202
[6] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 064202
[7] Wei-Xin Liu, Ming-Zhe Sun. Anomalous Variation of Beat Frequency in a Dual Frequency He–Ne Laser[J]. Chin. Phys. Lett., 2016, 33(02): 064202
[8] YAN Lu-Lu, ZHANG Yan-Yan, ZHANG Long, FAN Song-Tao, ZHANG Xiao-Fei, GUO Wen-Ge, ZHANG Shou-Gang, JIANG Hai-Feng. Attosecond-Resolution Er:Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2015, 32(10): 064202
[9] LIN Yi-Ge, WANG Qiang, LI Ye, MENG Fei, LIN Bai-Ke, ZANG Er-Jun, SUN Zhen, FANG Fang, LI Tian-Chu, FANG Zhan-Jun. First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM[J]. Chin. Phys. Lett., 2015, 32(09): 064202
[10] LI Ye, LIN Yi-Ge, WANG Qiang, WANG Shao-Kai, ZHAO Yang, MENG Fei, LIN Bai-Ke, CAO Jian-Ping, LI Tian-Chu, FANG Zhan-Jun, ZANG Er-Jun. A Hertz-Linewidth Ultrastable Diode Laser System for Clock Transition Detection of Strontium Atoms[J]. Chin. Phys. Lett., 2014, 31(2): 064202
[11] TAN Yi-Dong, ZHANG Song, REN Zhou, ZHANG Yong-Qin, ZHANG Shu-Lian. Real-Time Liquid Evaporation Rate Measurement Based on a Microchip Laser Feedback Interferometer[J]. Chin. Phys. Lett., 2013, 30(12): 064202
[12] HOU Lei, HAN Hai-Nian, ZHANG Jin-Wei, LI De-Hua, WEI Zhi-Yi. A Wide Spaced Femtosecond Ti:Sapphire Frequency Comb at 15 GHz by a Fabry–Pérot Filter Cavity[J]. Chin. Phys. Lett., 2013, 30(10): 064202
[13] WU Yun, TAN Yi-Dong, ZHANG Shu-Lian, LI Yan. Influence of Feedback Level on Laser Polarization in Polarized Optical Feedback[J]. Chin. Phys. Lett., 2013, 30(8): 064202
[14] CHEN Wen-Xue, ZHANG Shu-Lian, LONG Xing-Wu. Multi-Wavelength Conversion Based on Single Wavelength Results in Phase Retardation Measurement[J]. Chin. Phys. Lett., 2013, 30(3): 064202
[15] WU Yun, TAN Yi-Dong. Birefringence Optical Feedback with a Folded Cavity in HeNe Laser[J]. Chin. Phys. Lett., 2013, 30(1): 064202
Viewed
Full text


Abstract