FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A 10 Gb/s 1.5 μm Widely Tunable Directly Modulated InGaAsP/InP DBR Laser |
Dai-Bing Zhou1,2,3, Song Liang1,2,3**, Yi-Ming He1,2,3, Yun-Long Liu1,2,3, Wu Zhao1,2,3, Dan Lu1,2,3, Ling-Juan Zhao1,2,3, Wei Wang1,2,3 |
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 2College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China 3Beijing Key Laboratory of Low-Dimensional Semiconductor Materials and Devices, Beijing 100083, China
|
|
Cite this article: |
Dai-Bing Zhou, Song Liang, Yi-Ming He et al 2020 Chin. Phys. Lett. 37 064201 |
|
|
Abstract We report 10 Gb/s data transmissions using a packaged two-section InGaAsP/InP distributed Bragg reflector (DBR) laser. The tunable DBR laser has a wavelength tuning range of 12.12 nm. The DBR laser has greater than 10.84 GHz 3-dB direct modulation bandwidth within the wavelength tuning range. The 10 Gb/s data transmissions are performed at up to a distance of 30-km.
|
|
Received: 10 February 2020
Published: 26 May 2020
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
81.07.St
|
(Quantum wells)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
|
Fund: *Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFF0206103, 2016YFB0402301, and 2018YFB2200801) and the National Natural Science Foundation of China (Grant Nos. 61635010, 61320106013, 61474112, and 61574137). |
|
|
[1] | Ponnampalam L, Renaud C, Fice M, Cush R, Turner R, Firth P, Wale M and Seeds A 2014 Opt. Express 22 24405 |
[2] | Zou J, Wagner C, Eiselt M 2017 Optical Fiber Communications Conference and Exhibition (Los Angeles, CA, USA, 19–23 March 2017) W4C.2 |
[3] | Fiorani M, Rostami A, Wosinska L and Monti P 2016 IEEE/OSA J. Opt. Commun. Netw. 8 656 |
[4] | Kwon O K, Lee C W, Kim K S, Oh S H and Leem Y A 2018 Opt. Express 26 28704 |
[5] | Wagner C, Eiselt M H, Lawin M, Zou S J, Grobe K, Olmos J J V and Monroy I T 2016 J. Lightwave Technol. 34 5300 |
[6] | Raza M R, Fiorani M, Skubic B, Martensson J, Wosinska L and Monti P 2015 17th International Conference on Transparent Optical Networks (ICTON) (Budapest, Hungary, 5–9 July 2015) We.A2.3 |
[7] | Zhou D, Liang S, Zhao L, Zhu H and Wang W 2017 Opt. Express 25 2341 |
[8] | Zhou D, Liang S, Chen G, Mao Y, Lu D, Zhao L, Zhu H and Wang W 2018 IEEE Photon. Technol. Lett. 30 1937 |
[9] | Xie X, Liu Y, Tang Q, Zhang L, Zhao L, Zhu H, Wang W and Liang S 2018 IEEE Photon. J. 10 1501706 |
[10] | Han L, Liang S, Zhang C, Yu L, Zhao L, Zhu H, Wang B, Ji C and Wang W 2014 Chin. Opt. Lett. 12 091402 |
[11] | Han L, Liang S, Wang H, Qiao L, Xu J, Zhao L, Zhu H, Wang B and Wang W 2014 Opt. Express 22 30368 |
[12] | Han L, Liang S, Xu J, Qiao L, Wang H, Zhao L, Zhu H and Wang W 2016 IEEE Photon. J. 8 7903510 |
[13] | Yu L, Wang H, Lu D, Liang S, Zhang C, Pan B, Zhang L and Zhao L 2014 IEEE Photon. J. 6 1501308 |
[14] | Zhang K, He H, Xin H, Hu W, Liang S, Lu D, Zhao L 2018 Opt. Commun. 407 63 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|