Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 064101    DOI: 10.1088/0256-307X/37/6/064101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams
Fei Xiang1, Lin Zhang2, Tao Chen1, Yuan-Hong Zhong3, Jin Li4**
1State Grid Chongqing Electric Power Research Institute, Chongqing 401123, China
2State Grid Chongqing Electric Power Company, Chongqing 404000, China
3School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China
4College of Physics, Chongqing University, Chongqing 401331, China
Cite this article:   
Fei Xiang, Lin Zhang, Tao Chen et al  2020 Chin. Phys. Lett. 37 064101
Download: PDF(1510KB)   PDF(mobile)(1510KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract As an important electromagnetic field in experiment, Gaussian beams have non-vanishing longitudinal electric and magnetic components that generate significant energy fluxes on transverse directions. We focus on the transverse energy flux and derive the theoretical propagation properties. Unlike the longitudinal energy flux, the transverse energy flux has many unique physical behaviors, such as the odd symmetry on propagation, slower decay rate on resonant condition. By means of the characteristics of transverse energy flux, it is feasible to find the suitable regions where the information of coherent lights could be extracted exactly. With the typical laser parameters, we simulate the energy fluxes on receiver surface and analyze the corresponding distribution for the coherent light beams. Especially for coherent lights, the transverse energy flux on the $y$–$z$ plane with $x=0$ and $x$–$z$ plane with $y=0$, contains pure coherent information. Meanwhile, in the transverse distance $|y| < 2W_{0}$ ($W_{0}$ is the waist radius) and $|x| < W_{0}/3$ the coherent information could also be extracted appropriately.
Received: 10 March 2020      Published: 26 May 2020
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Dd (Wave propagation in random media)  
Fund: *Supported by the National Natural Science Foundation of China (Grant No. 11873001) and the Natural Science Foundation of Chongqing (Grant No. cstc2018jcyjAX0767).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/064101       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/064101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fei Xiang
Lin Zhang
Tao Chen
Yuan-Hong Zhong
Jin Li
[1] Gori F, Guattari G and Padovani C 1987 Opt. Commun. 64 491
[2] Wen J J and Breazeale M A 1988 J. Acoust. Soc. Am. 83 1752
[3] Wang H Y, Peng, X F and Liu L 2019 Opt. Lett. 44 3709
[4] Liu D J, Zhong H Y, Wang G Q, Yin H M and Wang Y C 2020 Opt. Laser Technol. 124 106003
[5] Jin L 2020 Phys. Scr. 95 035502
[6] Liu H L, Ralston J and Yin P M 2020 Math. Comput. 89 675
[7] Yang Z K, Lin X L, Zhang H, Xu Y T, Jin L, Zou Y G and Ma X H 2020 Opt. Lasers Eng. 126 105899
[8] Worku N G and Gross H 2019 J. Opt. Soc. Am. A 36 859
[9] Guo L, Tang Z L and Wan W 2014 Optik 125 5542
[10] Wang J F, Zhang D Q, Huang S J, Wu X Y and Wang P X 2018 Appl. Phys. B 124 204
[11] Sukhdeep K, Sharma A K and Salih H A 2009 Phys. Plasmas 16 042509
[12] Nadeem A A and Zubairy M S 1986 Opt. Commun. 59 385
[13] Chen J, Liu J, Zhu L, Deng X, Cheng X B and Li T B 2020 Chin. Phys. B 29 020601
[14] Cormack I G, Mazilu M and Dholakia K 2007 Appl. Phys. Lett. 91 023903
[15] Wang H F, Shi L P, Lukyanchuk B, Sheppard C and Chong C T 2008 Nat. Photon. 2 501
[16] Li J, Lin K, Li F Y and Zhong Y H 2011 Gen. Relativ. Gravit. 43 2209
[17] Wen H, Li F Y and Fang Z Y 2014 Phys. Rev. D 89 104025
[18] Wen H, Li F Y, Fang Z Y and Beckwith A 2014 Eur. Phys. J. C 74 2998
[19] Wang L L and Li J 2018 Gravitation Cosmol. 24 22
[20] Li J, Li F Y and Zhong Y H 2009 Chin. Phys. B 18 0922
[21]Walter G 2018 Classical Electrodynamics (Beijing: World Publishing Corporation)
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 064101
[2] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 064101
[3] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 064101
[4] Guo-Guo Wei, Chong Miao, Hao-Chong Huang, Hua Gao. Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chin. Phys. Lett., 2019, 36(3): 064101
[5] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 064101
[6] Xiao-Xiao Zhang, Zhen-Sen Wu, Xiang Su. Influence of Breaking Waves and Wake Bubbles on Surface-Ship Wake Scattering at Low Grazing Angles[J]. Chin. Phys. Lett., 2018, 35(7): 064101
[7] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 064101
[8] Jin-Xing Li, Min Zhang, Peng-Bo Wei. Effects of Breaking Waves on Composite Backscattering from Ship-Ocean Scene[J]. Chin. Phys. Lett., 2017, 34(9): 064101
[9] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 064101
[10] Xiao-Jing Zhang, Xi Wu, Ya-Dong Xu. Controlling of the Polarization States of Electromagnetic Waves Using Epsilon-near-Zero Metamaterials[J]. Chin. Phys. Lett., 2017, 34(8): 064101
[11] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. K. Srivastava. Radiation Losses in the Microwave X Band in Al-Cr Substituted Y-Type Hexaferrites[J]. Chin. Phys. Lett., 2017, 34(4): 064101
[12] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 064101
[13] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Yu Huang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. An Open Rectangular Waveguide Grating for Millimeter-Wave Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(09): 064101
[14] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. Design of a Novel Folded Waveguide for 60-GHz Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(04): 064101
[15] HUANG Lei, FAN Yun-Hui, WU Shan, YU Li-Zhi. Giant Asymmetric Transmission and Optical Rotation of a Three-Dimensional Metamaterial[J]. Chin. Phys. Lett., 2015, 32(09): 064101
Viewed
Full text


Abstract