NUCLEAR PHYSICS |
|
|
|
|
Stabilization of Short Wavelength Resistive Ballooning Modes by Ion-to-Electron Temperature and Gradient Ratios in Tokamak Edge Plasmas |
Jian-Qiang Xu**, Xiao-Dong Peng , Hong-Peng Qu , Guang-Zhou Hao |
Southwestern Institute of Physics, Chengdu 610041, China |
|
Cite this article: |
Jian-Qiang Xu, Xiao-Dong Peng , Hong-Peng Qu et al 2020 Chin. Phys. Lett. 37 062801 |
|
|
Abstract We numerically investigate the effects of ion-to-electron temperature ratio $T_{\rm i}/T_{\rm e}$ and temperature gradient ratio $\eta_{\rm i}/\eta_{\rm e}$ on resistive ballooning modes (RBMs) under tokamak edge plasma conditions. The results show that the growth rates of the RBMs exhibit the characteristic of a quite broad poloidal wavenumber spectrum in the cold ion limit. The growth rate spectrum becomes narrower and the peak of the spectrum shifts from the short to long wavelength side with increasing $T_{\rm i}/T_{\rm e}$ and $\eta_{\rm i}/\eta_{\rm e}$. The electron temperature gradient has a very weak effect on the stability of RBMs. However, the ion-to-electron temperature ratio and the temperature gradient ratio have strong stabilizing effects on short-wavelength RBMs, while they have relatively weak effects on long-wavelength RBMs.
|
|
Received: 11 December 2019
Published: 26 May 2020
|
|
PACS: |
28.52.Av
|
(Theory, design, and computerized simulation)
|
|
52.30.Cv
|
(Magnetohydrodynamics (including electron magnetohydrodynamics))
|
|
52.30.Ex
|
(Two-fluid and multi-fluid plasmas)
|
|
|
Fund: *Supported by the National Key R&D Program of China (Grant Nos. 2017YFE0300405 and 2017YFE0301200) and the National Natural Science Foundation of China (Grant Nos. 11775067, 11775069, 11875019, and 11805058). |
|
|
[1] | Horton W 1999 Rev. Mod. Phys. 71 735 |
[2] | Wesson J A 1978 Nucl. Fusion 18 87 |
[3] | Tang W M 1978 Nucl. Fusion 18 1089 |
[4] | Hammett G W, Beer M A, Dorland W, Cowley S C and Smith S A 1993 Plasma Phys. Control. Fusion 35 973 |
[5] | Coppi B, Migliuolo S and Pu Y K 1990 Phys. Fluids B 2 2322 |
[6] | Dorland W, Jenko F, Kotschenreuther M and Rogers B N 2000 Phys. Rev. Lett. 85 5579 |
[7] | Myra J R, D'Ippolito D A, Xu X Q and Cohen R H 2000 Phys. Plasmas 7 4622 |
[8] | Wilson H R, Connor J W, Field A R, Fielding S J, Hastie R J, Miller R L and Taylor J B 2000 Nucl. Fusion 40 713 |
[9] | Moore R W, Dominguez R R and Chu M S 1985 Nucl. Fusion 25 1575 |
[10] | Strauss H R 1981 Phys. Fluids 24 2004 |
[11] | Bateman G and Nelson D B 1978 Phys. Rev. Lett. 41 1804 |
[12] | Cohen B I, Umansky M V, Nevins W M, Makowski M A, Boedo J A, Rudakov D L, McKee G R, Yan Z and Groebner R J 2013 Phys. Plasmas 20 055906 |
[13] | Bourdelle C, Garbet X, Singh R and Schmitz L 2012 Plasma Phys. Control. Fusion 54 115003 |
[14] | Bourdelle C, Maggi C F, Chôné L, Beyer P, Citrin J, Fedorczak N, Garbet X, Loarte A, Millitello F, Romanelli M, Sarazin Y and Contributors J E 2014 Nucl. Fusion 54 022001 |
[15] | Kočan M, Gunn J P, Pascal J Y, Bonhomme G, Fenzi C, Gauthier E and Segui J L 2008 Plasma Phys. Control. Fusion 50 125009 |
[16] | Stejner M, Salewski M, Korsholm S B, Bindslev H, Delabie E, Leipold F, Meo F, Michelsen P K, Moseev D, Nielsen S K, Bürger A and de Baar M 2013 Plasma Phys. Control. Fusion 55 085002 |
[17] | Yu D L, Wei Y L, Liu L, Dong J Q, Ida K, Itoh K, Sun A P, Cao J Y, Shi Z B, Wang Z X, Xiao Y, Yuan B S, Du H R, He X X, Chen W J, Ma Q, Itoh S I, Zhao K J, Zhou Y, Wang J, Ji X Q, Zhong W L, Li Y G, Gao J M, Deng W, Yi L, Xu Y, Yan L W, Yang Q W, Ding X T, Duan X R, Yong Liu and Team A 2016 Nucl. Fusion 56 056003 |
[18] | Braginskii S I 1965 Rev. Plasma Phys. 1 205 |
[19] | Connor J W, Hastie R J and Taylor J B 1978 Phys. Rev. Lett. 40 396 |
[20] | Drake J F and Antonsen T M 1985 Phys. Fluids 28 544 |
[21] | Liewer P C 1985 Nucl. Fusion 25 543 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|