Chin. Phys. Lett.  2020, Vol. 37 Issue (6): 060301    DOI: 10.1088/0256-307X/37/6/060301
GENERAL |
Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench
Lin-Han Mo1, Qiu-Lan Zhang2**, Xin Wan1,3
1Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China
2School of Information Science and Engineering, Zhejiang University Ningbo Institute of Technology, Ningbo 315100, China
3CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Lin-Han Mo, Qiu-Lan Zhang, Xin Wan 2020 Chin. Phys. Lett. 37 060301
Download: PDF(4108KB)   PDF(mobile)(4102KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract One of the appealing features of topological systems is the presence of robust edge modes. Under a sudden quantum quench, the edge modes survive for a characteristic time that scales with the system size, during which the nontrivial topology continues to manifest in entanglement properties, even though the post-quench Hamiltonian belongs to a trivial phase. We exemplify this in the quench dynamics of a two-dimensional Haldane model with the help of one-particle entanglement spectrum and the probability density of its mid-states. We find that, beyond our knowledge in one-dimensional models, the momentum dependence of the transverse velocity plays a crucial role in the out-of-equilibrium evolution of the entanglement properties.
Received: 26 March 2020      Published: 26 May 2020
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: *Supported by the National Natural Science Foundation of China (Grant No. 11674282) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/37/6/060301       OR      https://cpl.iphy.ac.cn/Y2020/V37/I6/060301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lin-Han Mo
Qiu-Lan Zhang
Xin Wan
[1] Klitzing K V et al 1980 Phys. Rev. Lett. 45 494
[2] Halperin B I 1982 Phys. Rev. B 25 2185
[3] Thouless D J et al 1982 Phys. Rev. Lett. 49 405
[4] Hatsugai Y 1993 Phys. Rev. Lett. 71 3697
[5]Wen X G 2004 Quantum Field Theory of Many-Body Systems (Oxford: Oxford University Press)
[6] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[7] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[8] Bernevig B A et al 2006 Science 314 1757
[9] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[10] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[11] Schnyder A P et al 2008 Phys. Rev. B 78 195125
[12] Kitaev A 2009 AIP Conf. Proc. 1134 22
[13] Anderson P W 1958 Phys. Rev. 109 1492
[14] Altland A and Zirnbauer M 1997 Phys. Rev. B 55 1142
[15] See, e.g. Laflorencie N 2016 Phys. Rep. 646 1
[16] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[17] Rodríguez I D and Sierra G 2009 Phys. Rev. B 80 153303
[18] Dubail J et al 2012 Phys. Rev. B 85 115321
[19] Huang Z and Arovas D P 2012 arXiv:1205.6266 [cond-mat.str-el]
[20] Huang Z and Arovas D P 2012 Phys. Rev. B 86 245109
[21] Hermanns M et al 2014 J. Stat. Mech.: Theory Exp. 2014 P10030
[22] Qi X L et al 2012 Phys. Rev. Lett. 108 196402
[23] Swingle B and Senthil T 2012 Phys. Rev. B 86 045117
[24] Hermanns M 2017 arXiv:1702.01525 [cond-mat.str-el]
[25] See, e.g. Sacramento P D 2017 arXiv:1701.03567 [cond-mat.supr-con]
[26] Chung M C et al 2013 J. Phys.: Condens. Matter 25 285601
[27] Chung M C et al 2016 Sci. Rep. 6 29172
[28] Jotzu G et al 2014 Nature 515 237
[29] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[30] Caio M D et al 2015 Phys. Rev. Lett. 115 236403
[31] Caio M D et al 2016 Phys. Rev. B 94 155104
[32] Bhattacharya U, Hutchinson J and Dutta A 2017 Phys. Rev. B 95 144304
[33] Mardanya S et al 2018 Phys. Rev. B 97 115443
[34] McGinley M and Cooper N R 2019 Phys. Rev. B 99 075148
[35] Chung M C and Peschel I 2001 Phys. Rev. B 64 064412
[36] Peschel I 2003 J. Phys. A 36 L205
[37] Cheong S A and Henley C L 2004 Phys. Rev. B 69 075111
[38] Calabrese P and Cardy J 2016 J. Stat. Mech.: Theory Exp. 2016 064003
Related articles from Frontiers Journals
[1] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 060301
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 060301
[3] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 060301
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 060301
[5] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 060301
[6] Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu. Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems[J]. Chin. Phys. Lett., 2022, 39(1): 060301
[7] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 060301
[8] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 060301
[9] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 060301
[10] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 060301
[11] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 060301
[12] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 060301
[13] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 060301
[14] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 060301
[15] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 060301
Viewed
Full text


Abstract